A. Castagna, Maxime Guériau, G. Vizzari, Ivana Dusparic
{"title":"Demand-responsive rebalancing zone generation for reinforcement learning-based on-demand mobility","authors":"A. Castagna, Maxime Guériau, G. Vizzari, Ivana Dusparic","doi":"10.3233/AIC-201575","DOIUrl":null,"url":null,"abstract":"Enabling Ride-sharing (RS) in Mobility-on-demand (MoD) systems allows reduction in vehicle fleet size while preserving the level of service. This, however, requires an efficient vehicle to request assignment, and a vehicle rebalancing strategy, which counteracts the uneven geographical spread of demand and relocates unoccupied vehicles to the areas of higher demand. Existing research into rebalancing generally divides the coverage area into predefined geographical zones. Division is done statically, at design-time, impeding adaptivity to evolving demand patterns. To enable more accurate dynamic rebalancing, this paper proposes a Dynamic Demand-Responsive Rebalancer (D2R2) for RS systems. D2R2 uses Expectation-Maximization (EM) technique to recalculate zones at each decision step based on current demand. We integrate D2R2 with a Deep Reinforcement Learning multi-agent MoD system consisting of 200 vehicles serving 10,000 trips from New York taxi dataset. Results show a more fair workload division across the fleet when compared to static pre-defined equiprobable zones.","PeriodicalId":50835,"journal":{"name":"AI Communications","volume":"1 1","pages":"73-88"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/AIC-201575","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4
Abstract
Enabling Ride-sharing (RS) in Mobility-on-demand (MoD) systems allows reduction in vehicle fleet size while preserving the level of service. This, however, requires an efficient vehicle to request assignment, and a vehicle rebalancing strategy, which counteracts the uneven geographical spread of demand and relocates unoccupied vehicles to the areas of higher demand. Existing research into rebalancing generally divides the coverage area into predefined geographical zones. Division is done statically, at design-time, impeding adaptivity to evolving demand patterns. To enable more accurate dynamic rebalancing, this paper proposes a Dynamic Demand-Responsive Rebalancer (D2R2) for RS systems. D2R2 uses Expectation-Maximization (EM) technique to recalculate zones at each decision step based on current demand. We integrate D2R2 with a Deep Reinforcement Learning multi-agent MoD system consisting of 200 vehicles serving 10,000 trips from New York taxi dataset. Results show a more fair workload division across the fleet when compared to static pre-defined equiprobable zones.
期刊介绍:
AI Communications is a journal on artificial intelligence (AI) which has a close relationship to EurAI (European Association for Artificial Intelligence, formerly ECCAI). It covers the whole AI community: Scientific institutions as well as commercial and industrial companies.
AI Communications aims to enhance contacts and information exchange between AI researchers and developers, and to provide supranational information to those concerned with AI and advanced information processing. AI Communications publishes refereed articles concerning scientific and technical AI procedures, provided they are of sufficient interest to a large readership of both scientific and practical background. In addition it contains high-level background material, both at the technical level as well as the level of opinions, policies and news.