Scaling Multicore Databases via Constrained Parallel Execution

Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, Jinyang Li
{"title":"Scaling Multicore Databases via Constrained Parallel Execution","authors":"Zhaoguo Wang, Shuai Mu, Yang Cui, Han Yi, Haibo Chen, Jinyang Li","doi":"10.1145/2882903.2882934","DOIUrl":null,"url":null,"abstract":"Multicore in-memory databases often rely on traditional con- currency control schemes such as two-phase-locking (2PL) or optimistic concurrency control (OCC). Unfortunately, when the workload exhibits a non-trivial amount of contention, both 2PL and OCC sacrifice much parallel execution op- portunity. In this paper, we describe a new concurrency control scheme, interleaving constrained concurrency con- trol (IC3), which provides serializability while allowing for parallel execution of certain conflicting transactions. IC3 combines the static analysis of the transaction workload with runtime techniques that track and enforce dependencies among concurrent transactions. The use of static analysis simplifies IC3's runtime design, allowing it to scale to many cores. Evaluations on a 64-core machine using the TPC- C benchmark show that IC3 outperforms traditional con- currency control schemes under contention. It achieves the throughput of 434K transactions/sec on the TPC-C bench- mark configured with only one warehouse. It also scales better than several recent concurrent control schemes that also target contended workloads.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2882934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

Multicore in-memory databases often rely on traditional con- currency control schemes such as two-phase-locking (2PL) or optimistic concurrency control (OCC). Unfortunately, when the workload exhibits a non-trivial amount of contention, both 2PL and OCC sacrifice much parallel execution op- portunity. In this paper, we describe a new concurrency control scheme, interleaving constrained concurrency con- trol (IC3), which provides serializability while allowing for parallel execution of certain conflicting transactions. IC3 combines the static analysis of the transaction workload with runtime techniques that track and enforce dependencies among concurrent transactions. The use of static analysis simplifies IC3's runtime design, allowing it to scale to many cores. Evaluations on a 64-core machine using the TPC- C benchmark show that IC3 outperforms traditional con- currency control schemes under contention. It achieves the throughput of 434K transactions/sec on the TPC-C bench- mark configured with only one warehouse. It also scales better than several recent concurrent control schemes that also target contended workloads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过约束并行执行扩展多核数据库
多核内存数据库通常依赖于传统的虚拟货币控制方案,如两阶段锁定(2PL)或乐观并发控制(OCC)。不幸的是,当工作负载显示出大量的争用时,2PL和OCC都牺牲了许多并行执行机会。在本文中,我们描述了一种新的并发控制方案,交错约束并发控制(IC3),它提供了串行性,同时允许并行执行某些冲突事务。IC3将事务工作负载的静态分析与跟踪和执行并发事务之间的依赖关系的运行时技术相结合。静态分析的使用简化了IC3的运行时设计,允许它扩展到多个内核。在64核机器上使用TPC- C基准测试的评估表明,IC3在争用下优于传统的代币控制方案。它在仅配置一个仓库的TPC-C基准测试上实现了434K事务/秒的吞吐量。它的可伸缩性也优于最近的几种针对竞争工作负载的并发控制方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Experimental Comparison of Thirteen Relational Equi-Joins in Main Memory Rheem: Enabling Multi-Platform Task Execution Wander Join: Online Aggregation for Joins Graph Summarization for Geo-correlated Trends Detection in Social Networks Emma in Action: Declarative Dataflows for Scalable Data Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1