Comparative Analysis of Classifiers in a Plant Recommendation System based on Environmental Factors

Rohan Mittal, Sreenitya Mandava, Tanmay S. Shetty, Harshita Patel
{"title":"Comparative Analysis of Classifiers in a Plant Recommendation System based on Environmental Factors","authors":"Rohan Mittal, Sreenitya Mandava, Tanmay S. Shetty, Harshita Patel","doi":"10.1109/IDCIoT56793.2023.10053489","DOIUrl":null,"url":null,"abstract":"With the growing demand for reforestation and a sustainable neighborhood, everyone has begun to grow their own plants. However, the survival of a plant depends on many factors. A common problem faced by general customers is that their purchased plants, in gardens or balconies, fail to live long. This might happen because of many reasons, but the most recurrent one is the plant not adapting to the environmental conditions. Thus, personalizing the plant preferences is essential for users, so that they can buy the plants with high confidence of them surviving long. Here, this research work intends to develop an application with various filtering options, to determine the environmental conditions of the location, and the quality of lifestyle the plants can be provided with. To do so, we performed a comparison of the popular classification algorithms and found that the Random Forest Classifier served our purpose, successfully training an AI Model for predicting plants suiting the given conditions.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"1 1","pages":"689-694"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the growing demand for reforestation and a sustainable neighborhood, everyone has begun to grow their own plants. However, the survival of a plant depends on many factors. A common problem faced by general customers is that their purchased plants, in gardens or balconies, fail to live long. This might happen because of many reasons, but the most recurrent one is the plant not adapting to the environmental conditions. Thus, personalizing the plant preferences is essential for users, so that they can buy the plants with high confidence of them surviving long. Here, this research work intends to develop an application with various filtering options, to determine the environmental conditions of the location, and the quality of lifestyle the plants can be provided with. To do so, we performed a comparison of the popular classification algorithms and found that the Random Forest Classifier served our purpose, successfully training an AI Model for predicting plants suiting the given conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环境因素的植物推荐系统中分类器的比较分析
随着对重新造林和可持续社区的需求不断增长,每个人都开始自己种植植物。然而,植物的生存取决于许多因素。普通消费者面临的一个普遍问题是,他们在花园或阳台上购买的植物不能长时间生存。这种情况的发生可能有很多原因,但最常见的是植物不适应环境条件。因此,个性化的植物偏好对用户来说是必不可少的,这样他们就可以放心地购买这些植物。在这里,本研究工作打算开发一个具有各种过滤选项的应用程序,以确定位置的环境条件,以及植物可以提供的生活质量。为此,我们对流行的分类算法进行了比较,发现随机森林分类器达到了我们的目的,成功地训练了一个人工智能模型来预测适合给定条件的植物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
5689
期刊最新文献
Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain Prevention of Aflatoxin in Peanut Using Naive Bayes Model Smart Energy Meter and Monitoring System using Internet of Things (IoT) Maximizing the Net Present Value of Resource-Constrained Project Scheduling Problems using Recurrent Neural Network with Genetic Algorithm Framework for Implementation of Personality Inventory Model on Natural Language Processing with Personality Traits Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1