Demo: HELICoiD tool demonstrator for real-time brain cancer detection

R. Salvador, H. Fabelo, R. Lazcano, S. Ortega, D. Madroñal, G. Callicó, E. Juárez, C. Sanz
{"title":"Demo: HELICoiD tool demonstrator for real-time brain cancer detection","authors":"R. Salvador, H. Fabelo, R. Lazcano, S. Ortega, D. Madroñal, G. Callicó, E. Juárez, C. Sanz","doi":"10.1109/DASIP.2016.7853831","DOIUrl":null,"url":null,"abstract":"In this paper, a demonstrator of three different elements of the EU FET HELICoiD project is introduced. The goal of this demonstration is to show how the combination of hyperspectral imaging and machine learning can be a potential solution to precise real-time detection of tumor tissues during surgical operations. The HELICoiD setup consists of two hyperspectral cameras, a scanning unit, an illumination system, a data processing system and an EMB01 accelerator platform, which hosts an MPPA-256 manycore chip. All the components are mounted fulfilling restrictions from surgical environments, as shown in the accompanying video recorded at the operating room. An in-vivo human brain hyperspectral image data base, obtained at the University Hospital Doctor Negrin in Las Palmas de Gran Canaria, has been employed as input to different supervised classification algorithms (SVM, RF, NN) and to a spatial-spectral filtering stage (SVM-KNN). The resulting classification maps are shown in this demo. In addition, the implementation of the SVM-KNN classification algorithm on the MPPA EMB01 platform is demonstrated in the live demo.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"265 1","pages":"237-238"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a demonstrator of three different elements of the EU FET HELICoiD project is introduced. The goal of this demonstration is to show how the combination of hyperspectral imaging and machine learning can be a potential solution to precise real-time detection of tumor tissues during surgical operations. The HELICoiD setup consists of two hyperspectral cameras, a scanning unit, an illumination system, a data processing system and an EMB01 accelerator platform, which hosts an MPPA-256 manycore chip. All the components are mounted fulfilling restrictions from surgical environments, as shown in the accompanying video recorded at the operating room. An in-vivo human brain hyperspectral image data base, obtained at the University Hospital Doctor Negrin in Las Palmas de Gran Canaria, has been employed as input to different supervised classification algorithms (SVM, RF, NN) and to a spatial-spectral filtering stage (SVM-KNN). The resulting classification maps are shown in this demo. In addition, the implementation of the SVM-KNN classification algorithm on the MPPA EMB01 platform is demonstrated in the live demo.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
演示:用于实时脑癌检测的HELICoiD工具演示
本文介绍了欧盟FET HELICoiD项目的三种不同元件的演示器。本次演示的目的是展示高光谱成像和机器学习的结合如何成为外科手术中精确实时检测肿瘤组织的潜在解决方案。HELICoiD装置由两个高光谱相机、一个扫描单元、一个照明系统、一个数据处理系统和一个EMB01加速器平台组成,该平台拥有一个MPPA-256多核芯片。所有组件的安装都满足手术环境的限制,如在手术室录制的随附视频所示。由拉斯帕尔马斯大加那利岛大学医院Negrin博士获得的体内人脑高光谱图像数据库已被用作不同监督分类算法(SVM, RF, NN)和空间光谱滤波阶段(SVM- knn)的输入。生成的分类图如图所示。此外,还通过实例演示了SVM-KNN分类算法在MPPA EMB01平台上的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Brain Blood Vessel Segmentation in Hyperspectral Images Through Linear Operators SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1