{"title":"NL2Vul: Natural Language to Standard Vulnerability Score for Cloud Security Posture Management","authors":"Muhammed Fatih Bulut, Jinho Hwang","doi":"10.1109/CLOUD53861.2021.00073","DOIUrl":null,"url":null,"abstract":"Cloud Security Posture Management (CSPM) tools have been gaining popularity to automate, monitor and visualize the security posture of multi-cloud environments. The foundation to assess the risk lies on being able to analyze each vulnerability and quantify its risk. However, the number of vulnerabilities in National Vulnerability Database (NVD) has skyrocketed in recent years and surpassed 144K as of late 2020. The current standard vulnerability tracking system relies mostly on human-driven efforts. Besides, open-source libraries do not necessarily follow the standards of vulnerability reporting set by CVE and NIST, but rather use Github issues for reporting. In this paper, we propose a framework, NL2Vul, to measure score of vulnerabilities with minimal human efforts. NL2Vul makes use of deep neural networks to train on descriptions of software vulnerabilities from NVD and predicts vulnerability scores. To flexibly expand the trained NVD model for different data sources that are being used to evaluate the risk posture in CSPM, NL2Vul uses transfer learning for quick re-training. We have evaluated NL2Vul with vanilla NVD, public Github issues of open source projects, and compliance technology specification documents.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"25 1","pages":"566-571"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD53861.2021.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Cloud Security Posture Management (CSPM) tools have been gaining popularity to automate, monitor and visualize the security posture of multi-cloud environments. The foundation to assess the risk lies on being able to analyze each vulnerability and quantify its risk. However, the number of vulnerabilities in National Vulnerability Database (NVD) has skyrocketed in recent years and surpassed 144K as of late 2020. The current standard vulnerability tracking system relies mostly on human-driven efforts. Besides, open-source libraries do not necessarily follow the standards of vulnerability reporting set by CVE and NIST, but rather use Github issues for reporting. In this paper, we propose a framework, NL2Vul, to measure score of vulnerabilities with minimal human efforts. NL2Vul makes use of deep neural networks to train on descriptions of software vulnerabilities from NVD and predicts vulnerability scores. To flexibly expand the trained NVD model for different data sources that are being used to evaluate the risk posture in CSPM, NL2Vul uses transfer learning for quick re-training. We have evaluated NL2Vul with vanilla NVD, public Github issues of open source projects, and compliance technology specification documents.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)