Stefan Nastic, Thomas W. Pusztai, A. Morichetta, Victor Casamayor-Pujol, S. Dustdar, D. Vij, Ying Xiong
{"title":"Polaris Scheduler: Edge Sensitive and SLO Aware Workload Scheduling in Cloud-Edge-IoT Clusters","authors":"Stefan Nastic, Thomas W. Pusztai, A. Morichetta, Victor Casamayor-Pujol, S. Dustdar, D. Vij, Ying Xiong","doi":"10.1109/CLOUD53861.2021.00034","DOIUrl":null,"url":null,"abstract":"Application workload scheduling in hybrid Cloud-Edge-IoT infrastructures has been extensively researched over the last years. The recent trend of containerizing application workloads, both in the cloud and on the edge, has further fueled the need for more advanced scheduling solutions in these hybrid infrastructures. Unfortunately, most of the current approaches are not fully sensitive to the edge properties and also lack adequate support for Service Level Objective (SLO) awareness. Previously, we introduced software defined gateways (SDGs), which enable managing novel edge resources at scale. At the same time Kubernetes was initially released. In spite of not being specifically developed for the edge, Kubernetes implements many of the design principles introduced by our SDGs, making it suitable for building SDG extensions on top of it. In this paper we present Polaris Scheduler - a novel scheduling framework, which enables edge sensitive and SLO aware scheduling in the Cloud-Edge-IoT Continuum. Polaris Scheduler is being developed as a part of Linux Foundation's Centaurus project. We discuss the main research challenges, the approach, and the vision of SLO aware edge sensitive scheduling.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"131 1","pages":"206-216"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD53861.2021.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 15
Abstract
Application workload scheduling in hybrid Cloud-Edge-IoT infrastructures has been extensively researched over the last years. The recent trend of containerizing application workloads, both in the cloud and on the edge, has further fueled the need for more advanced scheduling solutions in these hybrid infrastructures. Unfortunately, most of the current approaches are not fully sensitive to the edge properties and also lack adequate support for Service Level Objective (SLO) awareness. Previously, we introduced software defined gateways (SDGs), which enable managing novel edge resources at scale. At the same time Kubernetes was initially released. In spite of not being specifically developed for the edge, Kubernetes implements many of the design principles introduced by our SDGs, making it suitable for building SDG extensions on top of it. In this paper we present Polaris Scheduler - a novel scheduling framework, which enables edge sensitive and SLO aware scheduling in the Cloud-Edge-IoT Continuum. Polaris Scheduler is being developed as a part of Linux Foundation's Centaurus project. We discuss the main research challenges, the approach, and the vision of SLO aware edge sensitive scheduling.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)