Five-Year Performance Evaluation of Geogrid Reinforcement in Low-Volume Unpaved Roads Using Dynamic Cone Penetrometer, Plate Load Test and Roadway Sensing

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-05-05 DOI:10.3390/geotechnics3020018
Chun-Hsing Ho, Jeremy DeGeyter, Dada Zhang
{"title":"Five-Year Performance Evaluation of Geogrid Reinforcement in Low-Volume Unpaved Roads Using Dynamic Cone Penetrometer, Plate Load Test and Roadway Sensing","authors":"Chun-Hsing Ho, Jeremy DeGeyter, Dada Zhang","doi":"10.3390/geotechnics3020018","DOIUrl":null,"url":null,"abstract":"This paper provides a five-year performance evaluation of an application of geogrid reinforcement in low-volume unpaved roads using dynamic cone penetrometer (DCP), plate load tests (PLT), and roadway sensing method. A Forest Service unpaved road located in northern Arizona, USA, exhibited severe deterioration on the surface, creating an unsafe traffic environment for vehicles. A total of four structural sections (1–4; 4.3 m wide) were installed in the 40 m long test area. One additional section of existing subgrade/roadbed with native soil adjacent to the test sections was used for comparison purposes. The project was originally completed in November 2015, followed by five annual field visits to observe surface conditions of the five test sections. Based on DCP and PLT results (both conducted in 2015), and roadway sensing tests conducted in 2020, the section made of 30 cm thick aggregate with one geogrid layer appeared to have a better capacity for resisting traffic loading as compared with the other four sections. This paper concludes that, from a long-term point of view, the geogrid reinforcement improves the capacity of the unpaved roads, with significantly reduced rutting and damage from both roadway traffic loads and weathering effects.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"136 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a five-year performance evaluation of an application of geogrid reinforcement in low-volume unpaved roads using dynamic cone penetrometer (DCP), plate load tests (PLT), and roadway sensing method. A Forest Service unpaved road located in northern Arizona, USA, exhibited severe deterioration on the surface, creating an unsafe traffic environment for vehicles. A total of four structural sections (1–4; 4.3 m wide) were installed in the 40 m long test area. One additional section of existing subgrade/roadbed with native soil adjacent to the test sections was used for comparison purposes. The project was originally completed in November 2015, followed by five annual field visits to observe surface conditions of the five test sections. Based on DCP and PLT results (both conducted in 2015), and roadway sensing tests conducted in 2020, the section made of 30 cm thick aggregate with one geogrid layer appeared to have a better capacity for resisting traffic loading as compared with the other four sections. This paper concludes that, from a long-term point of view, the geogrid reinforcement improves the capacity of the unpaved roads, with significantly reduced rutting and damage from both roadway traffic loads and weathering effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于动态锥贯仪、板载试验和路面传感的小体积未铺路面土工格栅加固五年性能评价
本文采用动态锥贯仪(DCP)、板载试验(PLT)和道路传感方法,对土工格栅加固在小体积未铺路面上的应用进行了五年性能评估。位于美国亚利桑那州北部的一条林业局未铺设的道路,路面严重恶化,为车辆创造了一个不安全的交通环境。共有四个结构段(1-4;4.3 m宽)安装在40 m长的试验区。另外一段现有路基/路基与试验路段相邻,并附有天然土,以作比较。该项目最初于2015年11月完成,随后每年进行五次实地考察,观察五个试验段的表面状况。根据2015年的DCP和PLT结果,以及2020年的道路感知试验,30cm厚骨料加一层土工格栅的路段比其他四个路段具有更好的抗交通荷载能力。本文的结论是,从长期来看,土工格栅加固提高了未铺设道路的通行能力,显著减少了车辙和道路交通荷载和风化作用造成的破坏。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1