{"title":"No effect of warming and watering on soil nitrous oxide fluxes in a temperate sitka spruce forest ecosystem","authors":"Junliang Zou, B. Osborne","doi":"10.1080/1943815X.2020.1823421","DOIUrl":null,"url":null,"abstract":"ABSTRACT Soil fluxes of nitrous oxide (N2O) play an important role in the global greenhouse gas budget. However, the response of soil N2O emissions to climate change in temperate forest plantations is not yet well understood. In this study, we assessed the responses of soil N2O fluxes to experimental warming with or without water addition, using a replicated in situ heating (~2°C above ambient) and water addition (170 mm) experiment in a temperate Sitka spruce plantation forest over the period 2014–2016. We found that seasonal fluxes of N2O during the year were highly variable, ranging from net uptake to net emissions. Seasonal variations in soil N2O fluxes were not correlated with either soil temperature or soil moisture. In addition, none of the individual warming/watering treatments, or their interactions, had significant effects on soil N2O fluxes and N-related soil properties. Overall, our results suggest that despite future increases in temperature, soil N2O emission may remain largely unchanged in many temperate forest ecosystems that are often N-limited.","PeriodicalId":16194,"journal":{"name":"Journal of Integrative Environmental Sciences","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Environmental Sciences","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/1943815X.2020.1823421","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT Soil fluxes of nitrous oxide (N2O) play an important role in the global greenhouse gas budget. However, the response of soil N2O emissions to climate change in temperate forest plantations is not yet well understood. In this study, we assessed the responses of soil N2O fluxes to experimental warming with or without water addition, using a replicated in situ heating (~2°C above ambient) and water addition (170 mm) experiment in a temperate Sitka spruce plantation forest over the period 2014–2016. We found that seasonal fluxes of N2O during the year were highly variable, ranging from net uptake to net emissions. Seasonal variations in soil N2O fluxes were not correlated with either soil temperature or soil moisture. In addition, none of the individual warming/watering treatments, or their interactions, had significant effects on soil N2O fluxes and N-related soil properties. Overall, our results suggest that despite future increases in temperature, soil N2O emission may remain largely unchanged in many temperate forest ecosystems that are often N-limited.
期刊介绍:
Journal of Integrative Environmental Sciences (JIES) provides a stimulating, informative and critical forum for intellectual debate on significant environmental issues. It brings together perspectives from a wide range of disciplines and methodologies in both the social and natural sciences in an effort to develop integrative knowledge about the processes responsible for environmental change. The Journal is especially concerned with the relationships between science, society and policy and one of its key aims is to advance understanding of the theory and practice of sustainable development.