Yingchun Miao, Jiao Liu, Xuanlin Wang, Bo Liu, Weifeng Liu, Yong Tao
{"title":"Fatty acid feedstocks enable a highly efficient glyoxylate-TCA cycle for high-yield production of β-alanine.","authors":"Yingchun Miao, Jiao Liu, Xuanlin Wang, Bo Liu, Weifeng Liu, Yong Tao","doi":"10.1002/mlf2.12006","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic engineering to produce tricarboxylic acid (TCA) cycle-derived chemicals is usually associated with problems of low production yield and impaired cellular metabolism. In this work, we found that fatty acid (FA) feedstocks could enable high-yield production of TCA cycle-derived chemicals, while maintaining an efficient and balanced metabolic flux of the glyoxylate-TCA cycle, which is favorable for both product synthesis and cell growth. Here, we designed a novel synthetic pathway for production of β-alanine, an important TCA cycle-derived product, from FAs with a high theortecial yield of 1.391 g/g. By introducing <i>panD</i>, improving <i>aspA,</i> and knocking out <i>iclR</i>, glyoxylate shunt was highly activated in FAs and the yield of β-alanine reached 0.71 g/g from FAs, much higher than from glucose. Blocking the TCA cycle at <i>icd/sucA/fumAC</i> nodes could increase β-alanine yield in a flask cultivation, but severely reduced cell growth and FA utilization during fed-batch processes. Replenishing oxaloacetate by knocking out <i>aspC</i> and recovering <i>fumAC</i> could restore the growth and lead to a titer of 35.57 g/l. After relieving the oxidative stress caused by FA metabolism, β-alanine production could reach 72.05 g/l with a maximum yield of 1.24 g/g, about 86% of the theoretical yield. Our study thus provides a promising strategy for the production of TCA cycle-derived chemicals.</p>","PeriodicalId":94145,"journal":{"name":"mLife","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2022-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10989975/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/mlf2.12006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metabolic engineering to produce tricarboxylic acid (TCA) cycle-derived chemicals is usually associated with problems of low production yield and impaired cellular metabolism. In this work, we found that fatty acid (FA) feedstocks could enable high-yield production of TCA cycle-derived chemicals, while maintaining an efficient and balanced metabolic flux of the glyoxylate-TCA cycle, which is favorable for both product synthesis and cell growth. Here, we designed a novel synthetic pathway for production of β-alanine, an important TCA cycle-derived product, from FAs with a high theortecial yield of 1.391 g/g. By introducing panD, improving aspA, and knocking out iclR, glyoxylate shunt was highly activated in FAs and the yield of β-alanine reached 0.71 g/g from FAs, much higher than from glucose. Blocking the TCA cycle at icd/sucA/fumAC nodes could increase β-alanine yield in a flask cultivation, but severely reduced cell growth and FA utilization during fed-batch processes. Replenishing oxaloacetate by knocking out aspC and recovering fumAC could restore the growth and lead to a titer of 35.57 g/l. After relieving the oxidative stress caused by FA metabolism, β-alanine production could reach 72.05 g/l with a maximum yield of 1.24 g/g, about 86% of the theoretical yield. Our study thus provides a promising strategy for the production of TCA cycle-derived chemicals.