Cozy: synthesizing collection data structures

Calvin Loncaric
{"title":"Cozy: synthesizing collection data structures","authors":"Calvin Loncaric","doi":"10.1145/2950290.2986032","DOIUrl":null,"url":null,"abstract":"Many applications require specialized data structures not found in standard libraries. Implementing new data structures by hand is tedious and error-prone. To alleviate this difficulty, we built a tool called Cozy that synthesizes data structures using counter-example guided inductive synthesis. We evaluate Cozy by showing how its synthesized implementations compare to handwritten implementations in terms of correctness and performance across four real-world programs. Cozy's data structures match the performance of the handwritten implementations while avoiding human error.","PeriodicalId":20532,"journal":{"name":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2950290.2986032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many applications require specialized data structures not found in standard libraries. Implementing new data structures by hand is tedious and error-prone. To alleviate this difficulty, we built a tool called Cozy that synthesizes data structures using counter-example guided inductive synthesis. We evaluate Cozy by showing how its synthesized implementations compare to handwritten implementations in terms of correctness and performance across four real-world programs. Cozy's data structures match the performance of the handwritten implementations while avoiding human error.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
舒适:合成集合数据结构
许多应用程序需要在标准库中找不到的专用数据结构。手工实现新的数据结构既繁琐又容易出错。为了减轻这个困难,我们构建了一个名为Cozy的工具,它使用反例引导归纳合成来合成数据结构。我们通过在四个实际程序中展示其合成实现与手写实现在正确性和性能方面的比较来评估Cozy。Cozy的数据结构与手写实现的性能相匹配,同时避免了人为错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of fault localization techniques Model, execute, and deploy: answering the hard questions in end-user programming (showcase) Guided code synthesis using deep neural networks Automated change impact analysis between SysML models of requirements and design Sustainable software design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1