{"title":"ENDOGENOUS RETROVIRUSES AS GENETIC MODULES THAT SHAPE THE GENOME REGULATORY NETWORKS DURING EVOLUTION","authors":"Mikola Popov, T. Kolotova, M. Davidenko","doi":"10.26565/2313-6693-2018-36-12","DOIUrl":null,"url":null,"abstract":"Endogenous retroviruses (ERV) are the descendants of exogenous retroviruses that integrated into the germ cells genome, fixed and became inheritable. ERVs have evolved transcriptional enhancers and promoters that allow their replication in a wide range of tissue. Because ERVs comprise the regulatory elements it could be assume that ERVs capable to shape and reshape genomic regulatory networks by inserting their promoters and enhancers in new genomic loci upon retrotransposition. Thus retroransposition events can build new regulatory regions and lead to a new pattern of gene activation in the cell. In this review we summarize evidence which revealed that ERVs provide a plethora of novel gene regulatory elements, including tissue specific promoters and enhancers for protein-coding genes or long noncoding RNAs in a wide range of cell types. The accumulated findings support the hypothesis that the ERVs have rewired the gene regulatory networks and act as a major source of genomic regulatory innovation during evolution.","PeriodicalId":31685,"journal":{"name":"Journal of V N Karazin Kharkiv National University Series Medicine","volume":"132 1","pages":"80-95"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of V N Karazin Kharkiv National University Series Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26565/2313-6693-2018-36-12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Endogenous retroviruses (ERV) are the descendants of exogenous retroviruses that integrated into the germ cells genome, fixed and became inheritable. ERVs have evolved transcriptional enhancers and promoters that allow their replication in a wide range of tissue. Because ERVs comprise the regulatory elements it could be assume that ERVs capable to shape and reshape genomic regulatory networks by inserting their promoters and enhancers in new genomic loci upon retrotransposition. Thus retroransposition events can build new regulatory regions and lead to a new pattern of gene activation in the cell. In this review we summarize evidence which revealed that ERVs provide a plethora of novel gene regulatory elements, including tissue specific promoters and enhancers for protein-coding genes or long noncoding RNAs in a wide range of cell types. The accumulated findings support the hypothesis that the ERVs have rewired the gene regulatory networks and act as a major source of genomic regulatory innovation during evolution.