{"title":"Quality materialised view selection using quantum inspired artificial bee colony optimisation","authors":"B. Arun","doi":"10.1504/ijiids.2020.10030204","DOIUrl":null,"url":null,"abstract":"The availability of huge volumes of digital data and powerful computers has facilitated the extraction of information, knowledge and wisdom for decision support system. The information value is solely dependent on data quality. Data warehouse provides quality data; it is required that it responds to queries within seconds. But on account of steadily growing data warehouse, the query response time is generally in hours and weeks. Materialised view is an efficient approach to facilitate timely extraction of information and knowledge for strategic business decision making. Selecting an optimal set of views for materialisation, referred to as view selection, is a NP complete problem. In this paper, a quantum inspired artificial bee colony algorithm is proposed to address the view selection problem. Experimental results show that the proposed algorithm significantly outperforms the fundamental algorithm for view selection, HRUA and other view selection algorithms like ABC, MBO, HBMO, BCOc, BCOi and BBMO.","PeriodicalId":39658,"journal":{"name":"International Journal of Intelligent Information and Database Systems","volume":"10 1","pages":"33-60"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijiids.2020.10030204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
The availability of huge volumes of digital data and powerful computers has facilitated the extraction of information, knowledge and wisdom for decision support system. The information value is solely dependent on data quality. Data warehouse provides quality data; it is required that it responds to queries within seconds. But on account of steadily growing data warehouse, the query response time is generally in hours and weeks. Materialised view is an efficient approach to facilitate timely extraction of information and knowledge for strategic business decision making. Selecting an optimal set of views for materialisation, referred to as view selection, is a NP complete problem. In this paper, a quantum inspired artificial bee colony algorithm is proposed to address the view selection problem. Experimental results show that the proposed algorithm significantly outperforms the fundamental algorithm for view selection, HRUA and other view selection algorithms like ABC, MBO, HBMO, BCOc, BCOi and BBMO.
期刊介绍:
Intelligent information systems and intelligent database systems are a very dynamically developing field in computer sciences. IJIIDS provides a medium for exchanging scientific research and technological achievements accomplished by the international community. It focuses on research in applications of advanced intelligent technologies for data storing and processing in a wide-ranging context. The issues addressed by IJIIDS involve solutions of real-life problems, in which it is necessary to apply intelligent technologies for achieving effective results. The emphasis of the reported work is on new and original research and technological developments rather than reports on the application of existing technology to different sets of data.