A predictive evaluation of global solar radiation using recurrent neural models and weather data

Rami Al-Hajj, A. Assi, Mohamad M. Fouad
{"title":"A predictive evaluation of global solar radiation using recurrent neural models and weather data","authors":"Rami Al-Hajj, A. Assi, Mohamad M. Fouad","doi":"10.1109/ICRERA.2017.8191265","DOIUrl":null,"url":null,"abstract":"This paper presents predictive models based on dynamic recurrent neural networks DRNNs with short term delay units to predict daily solar radiation intensity. The proposed approach aims to evaluate the daily global solar radiation using simple recurrent neural networks (SRNNs) with meteorological data. First, we present a reference model based on a feed-forward multilayer perceptron (MLP), then we present several recurrent models of the same structure but with various number of delay units that memorize the outcomes of the recurrent model to be used in subsequent iterations. The obtained comparative results showed advantage of DRNNs over simple MLPs when we deal with time series meteorological records. The performance of the proposed approach has been evaluated using statistical analysis.","PeriodicalId":6535,"journal":{"name":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","volume":"46 1","pages":"195-199"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRERA.2017.8191265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper presents predictive models based on dynamic recurrent neural networks DRNNs with short term delay units to predict daily solar radiation intensity. The proposed approach aims to evaluate the daily global solar radiation using simple recurrent neural networks (SRNNs) with meteorological data. First, we present a reference model based on a feed-forward multilayer perceptron (MLP), then we present several recurrent models of the same structure but with various number of delay units that memorize the outcomes of the recurrent model to be used in subsequent iterations. The obtained comparative results showed advantage of DRNNs over simple MLPs when we deal with time series meteorological records. The performance of the proposed approach has been evaluated using statistical analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用循环神经模型和天气资料对全球太阳辐射的预测评估
本文提出了一种基于动态递归神经网络(DRNNs)的短期延迟单元预测太阳日辐射强度的模型。提出的方法旨在利用简单递归神经网络(SRNNs)和气象数据来评估每日全球太阳辐射。首先,我们提出了一个基于前馈多层感知器(MLP)的参考模型,然后我们提出了几个具有相同结构但具有不同数量延迟单元的循环模型,这些延迟单元可以记住循环模型的结果,以便在随后的迭代中使用。得到的对比结果表明,在处理时间序列气象记录时,DRNNs优于简单mlp。使用统计分析对所提出的方法的性能进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of AC link topologies in non-isolated DC/DC triple active bridge converter for current stress minimization Modelling and attitude control of a shrouded floating offshore wind turbine with hinged structure in extreme conditions Direct load control of air conditioners in Qatar: An empirical study Stochastic unit commitment considering Markov process of wind power forecast Primary and secondary voltage/frequency controller design for energy storage devices using consensus theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1