Offshore Water Treatment KPIs Using Machine Learning Techniques

L. Flores, Martin Morles, Cheng Chen
{"title":"Offshore Water Treatment KPIs Using Machine Learning Techniques","authors":"L. Flores, Martin Morles, Cheng Chen","doi":"10.2118/206173-ms","DOIUrl":null,"url":null,"abstract":"\n New water treatment facilities in the Gulf of Mexico include a seawater Sulfate Removal Unit (SRU) to mitigate reservoir souring and scaling. The general industry sulfate target for offshore SRU is usually 20 mg/L or even 40 mg/L; however, some facilities may require <10 mg/L of sulfate in injection water, which makes water quality monitoring more critical and challenging. Current industrial practice relies on only pressure drop and a constant cleaning interval frequency to perform SRU maintenance which may result in reduced membrane life due to frequency cleaning or severe membrane fouling without the capability to predict fouling based on process conditions. The machine learning techniques applied will fill the gap and deliver a prediction model based on both simulation and real-time field data. This model will track and monitor the system key performance indicators (KPIs) including pressure, membrane fouling factor (FF), permeate sulfate concentration etc. The monitoring and prediction of these KPIs provide estimates on when the next maintenance procedure is required, track membrane system status for troubleshooting and actions, and optimize membrane performance by tuning operation conditions.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206173-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New water treatment facilities in the Gulf of Mexico include a seawater Sulfate Removal Unit (SRU) to mitigate reservoir souring and scaling. The general industry sulfate target for offshore SRU is usually 20 mg/L or even 40 mg/L; however, some facilities may require <10 mg/L of sulfate in injection water, which makes water quality monitoring more critical and challenging. Current industrial practice relies on only pressure drop and a constant cleaning interval frequency to perform SRU maintenance which may result in reduced membrane life due to frequency cleaning or severe membrane fouling without the capability to predict fouling based on process conditions. The machine learning techniques applied will fill the gap and deliver a prediction model based on both simulation and real-time field data. This model will track and monitor the system key performance indicators (KPIs) including pressure, membrane fouling factor (FF), permeate sulfate concentration etc. The monitoring and prediction of these KPIs provide estimates on when the next maintenance procedure is required, track membrane system status for troubleshooting and actions, and optimize membrane performance by tuning operation conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用机器学习技术的近海水处理kpi
墨西哥湾的新水处理设施包括一个海水硫酸盐去除装置(SRU),以减轻储层酸化和结垢。海上SRU的一般工业硫酸指标通常为20mg /L甚至40mg /L;然而,一些设施可能要求注入水中的硫酸盐含量低于10 mg/L,这使得水质监测变得更加关键和具有挑战性。目前的工业实践只依赖于压降和固定的清洗间隔频率来进行SRU维护,这可能会导致膜寿命缩短,因为频繁清洗或严重的膜污染,而没有能力根据工艺条件预测污染。应用的机器学习技术将填补这一空白,并提供基于模拟和实时现场数据的预测模型。该模型将跟踪和监测系统关键性能指标(kpi),包括压力、膜污染系数(FF)、渗透硫酸盐浓度等。这些关键绩效指标的监测和预测提供了下一次维护程序的估计,跟踪膜系统状态以进行故障排除和操作,并通过调整操作条件来优化膜性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of Wettability Alteration from Alkali/Nanoparticles/Polymer Flooding - Integrating Data of Imbibition, Contact Angle and Interfacial-Tension to Screen Injection Agents Benchmarking and Field-Testing of the Distributed Quasi-Newton Derivative-Free Optimization Method for Field Development Optimization Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test Four Simple Questions: Decision-Centered Risk and Project Management Gas Migration in Wellbores During Pressurized Mud Cap Drilling PMCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1