{"title":"Offshore Water Treatment KPIs Using Machine Learning Techniques","authors":"L. Flores, Martin Morles, Cheng Chen","doi":"10.2118/206173-ms","DOIUrl":null,"url":null,"abstract":"\n New water treatment facilities in the Gulf of Mexico include a seawater Sulfate Removal Unit (SRU) to mitigate reservoir souring and scaling. The general industry sulfate target for offshore SRU is usually 20 mg/L or even 40 mg/L; however, some facilities may require <10 mg/L of sulfate in injection water, which makes water quality monitoring more critical and challenging. Current industrial practice relies on only pressure drop and a constant cleaning interval frequency to perform SRU maintenance which may result in reduced membrane life due to frequency cleaning or severe membrane fouling without the capability to predict fouling based on process conditions. The machine learning techniques applied will fill the gap and deliver a prediction model based on both simulation and real-time field data. This model will track and monitor the system key performance indicators (KPIs) including pressure, membrane fouling factor (FF), permeate sulfate concentration etc. The monitoring and prediction of these KPIs provide estimates on when the next maintenance procedure is required, track membrane system status for troubleshooting and actions, and optimize membrane performance by tuning operation conditions.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206173-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
New water treatment facilities in the Gulf of Mexico include a seawater Sulfate Removal Unit (SRU) to mitigate reservoir souring and scaling. The general industry sulfate target for offshore SRU is usually 20 mg/L or even 40 mg/L; however, some facilities may require <10 mg/L of sulfate in injection water, which makes water quality monitoring more critical and challenging. Current industrial practice relies on only pressure drop and a constant cleaning interval frequency to perform SRU maintenance which may result in reduced membrane life due to frequency cleaning or severe membrane fouling without the capability to predict fouling based on process conditions. The machine learning techniques applied will fill the gap and deliver a prediction model based on both simulation and real-time field data. This model will track and monitor the system key performance indicators (KPIs) including pressure, membrane fouling factor (FF), permeate sulfate concentration etc. The monitoring and prediction of these KPIs provide estimates on when the next maintenance procedure is required, track membrane system status for troubleshooting and actions, and optimize membrane performance by tuning operation conditions.