{"title":"Kinetics adsorption of Amoxicillin from aqueous solution by Graphen Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent","authors":"Tahmasebi Soheila, M. Omid, Yari Mohammad","doi":"10.7508/IJND.2016.02.006","DOIUrl":null,"url":null,"abstract":"A BSTR AC T: In this study, Graphene Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent was synthesized by direct reaction between GO and chloroauric acid for removal of amoxicillin from aqueous solution. Nanocomposite (GO-AuNPs) was characteristic by FT-IR spectroscopy. The changes of parameters such as contact time, pH of solution, initial amoxicillin concentration and temperature were measured and investigated by several adsorption experiments various factors affecting the uptake behavior. The adsorption kinetics well described by a pseudo-secondorder rate model.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.02.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
A BSTR AC T: In this study, Graphene Oxide- Gold nanoparticles (GO-AuNPs) nanocomposite as novel adsorbent was synthesized by direct reaction between GO and chloroauric acid for removal of amoxicillin from aqueous solution. Nanocomposite (GO-AuNPs) was characteristic by FT-IR spectroscopy. The changes of parameters such as contact time, pH of solution, initial amoxicillin concentration and temperature were measured and investigated by several adsorption experiments various factors affecting the uptake behavior. The adsorption kinetics well described by a pseudo-secondorder rate model.