Fethi Demim, S. Benmansour, A. Nemra, A. Rouigueb, M. Hamerlain, A. Bazoula
{"title":"Simultaneous localisation and mapping for autonomous underwater vehicle using a combined smooth variable structure filter and extended kalman filter","authors":"Fethi Demim, S. Benmansour, A. Nemra, A. Rouigueb, M. Hamerlain, A. Bazoula","doi":"10.1080/0952813X.2021.1908430","DOIUrl":null,"url":null,"abstract":"ABSTRACT Localisation technology is one of the most important challenges of underwater vehicle applications that accomplish any scheduled mission in the complex underwater environment. Currently, the Simultaneous Localisation and Mapping (SLAM) of the Autonomous Underwater Vehicle (AUV) is becoming a hotspot research. AUVs have, only recently, received more attention and underwater platforms continue to dominate the research. To ensure the success of an accurate AUV localisation mission, the problem of drift on the estimated trajectory must be overcome. In order to improve the positioning accuracy of the AUV localisation, a new filter referred to as the Adaptive Smooth Variable Structure Filter (ASVSF) based SLAM positioning algorithm is proposed. To verify the improvement of this filter, the combined SVSF and the Extended Kalman Filter (EKF) are presented. Experimental results based on dataset for underwater SLAM algorithm show the accuracy and stability of the ASVSF AUV localisation position. Several experiments were tested under real-life conditions with an autonomous underwater vehicle based on different filters. The results of these filters have been compared based on Root Mean Squared Error (RMSE) and in terms of localisation and map building errors. It is shown that the adaptive SVSF-SLAM strategy obtains the best performance compared to other algorithms.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"8 1","pages":"621 - 650"},"PeriodicalIF":1.7000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1908430","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6
Abstract
ABSTRACT Localisation technology is one of the most important challenges of underwater vehicle applications that accomplish any scheduled mission in the complex underwater environment. Currently, the Simultaneous Localisation and Mapping (SLAM) of the Autonomous Underwater Vehicle (AUV) is becoming a hotspot research. AUVs have, only recently, received more attention and underwater platforms continue to dominate the research. To ensure the success of an accurate AUV localisation mission, the problem of drift on the estimated trajectory must be overcome. In order to improve the positioning accuracy of the AUV localisation, a new filter referred to as the Adaptive Smooth Variable Structure Filter (ASVSF) based SLAM positioning algorithm is proposed. To verify the improvement of this filter, the combined SVSF and the Extended Kalman Filter (EKF) are presented. Experimental results based on dataset for underwater SLAM algorithm show the accuracy and stability of the ASVSF AUV localisation position. Several experiments were tested under real-life conditions with an autonomous underwater vehicle based on different filters. The results of these filters have been compared based on Root Mean Squared Error (RMSE) and in terms of localisation and map building errors. It is shown that the adaptive SVSF-SLAM strategy obtains the best performance compared to other algorithms.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving