New directions in predicting bank failures: The case of small banks

Frederick D. Crowley, Anthony L. Loviscek
{"title":"New directions in predicting bank failures: The case of small banks","authors":"Frederick D. Crowley,&nbsp;Anthony L. Loviscek","doi":"10.1016/1042-752X(90)90011-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper uses five financial accounting ratios with three alternative loan-portfolio diversification measures to classify failures among small commercial banks that occurred during 1984. Classifications for one, two and three years before failure are performed using linear probability, logit, probit, and discriminant analysis models. Validation is done through the U-Method. The results indicate that the logit and probit functional forms may offer an advantage over the more frequently used discriminant analysis. U-Method classification accuracy is approximately 86 percent for the logit and probit models.</p></div>","PeriodicalId":100963,"journal":{"name":"North American Review of Economics and Finance","volume":"1 1","pages":"Pages 145-162"},"PeriodicalIF":0.0000,"publicationDate":"1990-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/1042-752X(90)90011-4","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Review of Economics and Finance","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/1042752X90900114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper uses five financial accounting ratios with three alternative loan-portfolio diversification measures to classify failures among small commercial banks that occurred during 1984. Classifications for one, two and three years before failure are performed using linear probability, logit, probit, and discriminant analysis models. Validation is done through the U-Method. The results indicate that the logit and probit functional forms may offer an advantage over the more frequently used discriminant analysis. U-Method classification accuracy is approximately 86 percent for the logit and probit models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测银行倒闭的新方向:以小银行为例
本文采用五种财务会计比率和三种不同的贷款组合多样化措施对1984年发生的小型商业银行破产进行分类。使用线性概率、logit、probit和判别分析模型进行故障前1、2和3年的分类。验证是通过U-Method完成的。结果表明,logit和probit函数形式可能比更常用的判别分析提供优势。对于logit和probit模型,U-Method的分类准确率约为86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adjustment in the process of trade liberalization: The U.S. and Mexico Food pricing policy in Costa Rica: A general equilibrium analysis Legal rules as a source of comparative advantage: A case study of telecommunication equipment interconnection The role for openness in the demand for money: Evidence from Barbados The automotive industry: Technological change and sourcing from Mexico
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1