A mixed-integer optimization approach for homogeneous magnet design

Iman Dayarian, T. Chan, D. Jaffray, T. Stanescu
{"title":"A mixed-integer optimization approach for homogeneous magnet design","authors":"Iman Dayarian, T. Chan, D. Jaffray, T. Stanescu","doi":"10.1142/S2339547818500036","DOIUrl":null,"url":null,"abstract":"Magnetic resonance imaging (MRI) is a powerful diagnostic tool that has become the imaging modality of choice for soft-tissue visualization in radiation therapy. Emerging technologies aim to integrate MRI with a medical linear accelerator to form novel cancer therapy systems (MR-linac), but the design of these systems to date relies on heuristic procedures. This paper develops an exact, optimization-based approach for magnet design that 1) incorporates the most accurate physics calculations to date, 2) determines precisely the relative spatial location, size, and current magnitude of the magnetic coils, 3) guarantees field homogeneity inside the imaging volume, 4) produces configurations that satisfy, for the first time, small-footprint feasibility constraints required for MR-linacs. Our approach leverages modern mixed-integer programming (MIP), enabling significant flexibility in magnet design generation, e.g., controlling the number of coils and enforcing symmetry between magnet poles. Our numerical results demonstrate the superiority of our method versus current mainstream methods.","PeriodicalId":82888,"journal":{"name":"Technology (Elmsford, N.Y.)","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technology (Elmsford, N.Y.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2339547818500036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Magnetic resonance imaging (MRI) is a powerful diagnostic tool that has become the imaging modality of choice for soft-tissue visualization in radiation therapy. Emerging technologies aim to integrate MRI with a medical linear accelerator to form novel cancer therapy systems (MR-linac), but the design of these systems to date relies on heuristic procedures. This paper develops an exact, optimization-based approach for magnet design that 1) incorporates the most accurate physics calculations to date, 2) determines precisely the relative spatial location, size, and current magnitude of the magnetic coils, 3) guarantees field homogeneity inside the imaging volume, 4) produces configurations that satisfy, for the first time, small-footprint feasibility constraints required for MR-linacs. Our approach leverages modern mixed-integer programming (MIP), enabling significant flexibility in magnet design generation, e.g., controlling the number of coils and enforcing symmetry between magnet poles. Our numerical results demonstrate the superiority of our method versus current mainstream methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
均匀磁体设计的混合整数优化方法
磁共振成像(MRI)是一种强大的诊断工具,已成为放射治疗中软组织可视化的首选成像方式。新兴技术旨在将MRI与医学线性加速器结合起来,形成新的癌症治疗系统(MR-linac),但迄今为止,这些系统的设计依赖于启发式程序。本文开发了一种精确的、基于优化的磁体设计方法,1)结合了迄今为止最精确的物理计算,2)精确地确定了磁线圈的相对空间位置、尺寸和电流大小,3)保证了成像体积内的场均匀性,4)首次产生了满足MR-linacs所需的小占地可行性约束的配置。我们的方法利用现代混合整数规划(MIP),使磁体设计生成具有显着的灵活性,例如,控制线圈数量和加强磁极之间的对称性。数值结果表明了该方法相对于当前主流方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From Noise to Bias: Overconfidence in New Product Forecasting Improving the accuracy of project schedules Designing Freemium with Usage Limitation: When Is It a Viable Strategy? Sales Policies for a Virtual Assistant Online Business and Marketplaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1