КОЛЛЕКТИВНАЯ ДИНАМИКА И РАЗМЕРНЫЕ ЭФФЕКТЫ ФАЗООБРАЗОВАНИЯ В СИСТЕМЕ АЭРОСИЛ – ПОЛИСТИРОЛЬНЫЙ ЛАТЕКС

I. I. Dolgih, D. A. Zhukalin, L. A. Bityutskaya
{"title":"КОЛЛЕКТИВНАЯ ДИНАМИКА И РАЗМЕРНЫЕ ЭФФЕКТЫ ФАЗООБРАЗОВАНИЯ В СИСТЕМЕ АЭРОСИЛ – ПОЛИСТИРОЛЬНЫЙ ЛАТЕКС","authors":"I. I. Dolgih, D. A. Zhukalin, L. A. Bityutskaya","doi":"10.17308/kcmf.2019.21/1150","DOIUrl":null,"url":null,"abstract":"В стандартных условиях проведен модельный эксперимент по влиянию сил обеднения на процесс высыхания капли взвесей невзаимодействующих частиц аэросил – полистирольный латекс. Впервые обнаружен быстропротекающий процесс фазового превращения аэросила в кристаллический SiO2 в течение десятков секунд, сопровождающийся резким изменением цвета раствора от светло-голубого до синего. Обнаружена дифракционная картина, свидетельствующая о нанокристаллической природе зародышеобразования новой фазы. Фазообразование интерпретировано как результат действия неравновесной силы обеднения в условиях гидродинамической неустойчивости высыхающей капли. \n  \n  \nREFERENCES \n \nTret’yakov Yu. D. Self-organisation processes in the chemistry of materials. Uspekhi khimii [Russian Chemical Reviews], 2003, v. 72(8), pp. 651–679. https://doi.org/10.1070/RC2003v072n08ABEH000836 \nKushnir S. E., Kazin P. E., Trusov L. A., Tret’yakov Yu. D. Self-organization of micro- and nanoparticles in ferrofl uids. Uspekhi khimii [Russian Chemical Reviews], 2012, v. 81(6), pр. 560–570. https://doi.org/10.1070/RC2012v081n06ABEH004250 \nLebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfi mov M. V. Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2013, v. 8(3-4), pр. 137–162. https://doi.org/10.1134/S1995078013020110 \nWalker D. A., Kowalczyk B., Cruz M. O., Grzybowski B. A. Electrostatics at the nanoscale. Nanoscale, 2011, v. 3(4), pp. 1316–1344. https://doi.org/10.1039/C0NR00698J \nOuyang Q., Castets V., Boissonade J., et al. Sustained patterns in chlorite–iodide reactions in a onedimensional reactor. J. Chem. Phys., 1991, v. 95(1), pp. 351–360. https://doi.org/10.1063/1.461490 \nTarasevich Yu. Yu., Pravoslavnova D. M. Kachestvennyy analiz zakonomernostey vysykhaniya kapli mnogokomponentnogo rastvora na tverdoy podlozhke [Qualitative analysis of patterns of drying of a drop of a multicomponent solution on a solid substrate], Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, vol. 77, no. 2. pp. 17–21. URL: http://journals.ioffe. ru/articles/viewPDF/9047 (in Russ.) \nFaigl’ F., Anger V. Kapel’nyi analiz neorganicheskikh veshchestv [Drip Analysis of Inorganic Substances]. Moscow, Mir Publ., 1976, v. 1, 390 p., v. 2, 320 p. (in Russ.) \nYakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. Kapli biologicheskikh zhidkostey, vysykhayushchie na tverdoy podlozhke: dinamika morfologii, massy, temperatury i mekhanicheskikh svoystv [Drops of biological fluids drying on a solid substrate: dynamics of morphology, mass, temperature, and mechanical properties]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2010, v. 80(7), pp. 17–23. URL: http://journals.ioffe.ru/articles/viewPDF/10043 (in Russ.) \nAlfi mov M. V., Kadushnikov R. M., Shturkin N. A., Alievskii V. M., Lebedev-Stepanov P. V. Immitatsionnoe modelirovanie protsessov samoorganizatsii nanochastits [Simulation modeling of self-organization processes of nanoparticles], Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2006, v. 1(1–2), pp. 127–133. (in Russ.) \nLebedev-Stepanov P. V., Gromov S. P., Molchanov S. P., Chernyshov N. A., Batalov I. S., Sazonov S. K., Lobova N. A., Shevchenko N. N., Men’shikova A. Yu., Alfimov M. V. Controlling the self-assemblage of modifi ed colloid particle ensembles in solution microdropletsRossiiskie nanotekhnologii [Nanotechnologies in Russia], 2011, v. 6(9–10), 569–578, pp. 72–78. https://doi.org/10.1134/S1995078011050119 \nAndreeva L. V., Novoselova A. S., Lebedev-Stepanov P. V., Ivanov D. A., Koshkin A. V., Petrov A. N., Alfi mov M. V. Zakonomernosti kristallizatsii rastvorennykh veshchestv iz mikrokapli [Patterns of crystallization of dissolved substances from microdrops]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, v. 77(2), pp. 22–30. URL: http://journals.ioffe.ru/articles/view-PDF/9048 (in Russ.) \nBarash L. Yu. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer, 2016, v. 102, pp. 445–454. https://doi.org/10.1016/j.ijh eatmasstransfer.2016.06.042 al \nBityutskaya L. A., Zhukalin D. A., Tuchin A. V., Frolov A. A., Buslov V. A. Thermal dissipative structures in the case of carbon nanotubes aggregation in drying drops. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2014, v. 16(4), pp. 425–430. URL: https://journals.vsu.ru/kcmf/ article/view/856/937 (in Russ.) \nAsakura S., Oosawa F. Interaction between particles suspended in solutions of macromolecules. Polymer Science Part A: General Papers, 1958, v. 33(126), pp. 183–192. https://doi.org/10.1002/pol.1958.1203312618 \nMinton A. P. How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 2015, v. 119(14), pp. 2863–2869. https://doi.org/10.1242/jcs.03063 \nChebotareva N. A., Kurganov B. I., Livanova N. B. Biochemical effects of molecular crowding. Biohimija [Biochemistry], 2004, v. 69(11), pp. 1239–1251. https://doi.org/10.1007/s10541-005-0070-y \nBishop K. J., Wilmer C. E., Soh S., Grzybowski B. A. Nanoscale forces and their uses in self-assembly. Small, 2009, v. 5(14), p. 1600–1630. https://doi.org/10.1002/smll.200900358 \nMinton A. P. The infl uence of macromolecular crowding and macromolecular confi nement on biochemical reactions in physiological media. Journal of Biological Chemistry, v. 276(14), pp. 10577–10580. https://doi.org/10.1074/jbc.r100005200 \nHuber F., Strehle D., Schnauss J., Kas J. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces. New J. Physics, 2015, v. 17(4), p. 043029. https://doi.org/10.1088/1367-2630/17/4/043029 \nJiang H., Wada H., Yoshinaga N., Sano M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Physical Review Letters, 2009, v. 102(20), p. 208301. https://doi.org/10.1103/physrevlett.102.208301 \nDeng H., Li G., Liu H. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Optics Express, 2012, v. 20(9), p. 9616. https://doi.org/10.1364/oe.20.009616 \nWulfert R., Seiferta U., Speck T. Nonequilibrium depletion interactions in active microrheology. Soft Matter, 2017, v. 13(48), p. 9093–9102. https://doi.org/10.1039/c7sm01737e \nDolgih I. I., Bitutskaya L. A. Entropy driven aggregation of CNT in a drying drop on hydrophilic and hydrophobic substrate. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2018, v. 20(4), p. 664–668. https://doi.org/10.17308/kcmf.2018.20/635","PeriodicalId":17879,"journal":{"name":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","volume":"61 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17308/kcmf.2019.21/1150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

В стандартных условиях проведен модельный эксперимент по влиянию сил обеднения на процесс высыхания капли взвесей невзаимодействующих частиц аэросил – полистирольный латекс. Впервые обнаружен быстропротекающий процесс фазового превращения аэросила в кристаллический SiO2 в течение десятков секунд, сопровождающийся резким изменением цвета раствора от светло-голубого до синего. Обнаружена дифракционная картина, свидетельствующая о нанокристаллической природе зародышеобразования новой фазы. Фазообразование интерпретировано как результат действия неравновесной силы обеднения в условиях гидродинамической неустойчивости высыхающей капли.     REFERENCES Tret’yakov Yu. D. Self-organisation processes in the chemistry of materials. Uspekhi khimii [Russian Chemical Reviews], 2003, v. 72(8), pp. 651–679. https://doi.org/10.1070/RC2003v072n08ABEH000836 Kushnir S. E., Kazin P. E., Trusov L. A., Tret’yakov Yu. D. Self-organization of micro- and nanoparticles in ferrofl uids. Uspekhi khimii [Russian Chemical Reviews], 2012, v. 81(6), pр. 560–570. https://doi.org/10.1070/RC2012v081n06ABEH004250 Lebedev-Stepanov P. V., Kadushnikov R. M., Molchanov S. P., Ivanov A. A., Mitrokhin V. P., Vlasov K. O., Rubin N. I., Yurasik G. A., Nazarov V. G., Alfi mov M. V. Self-assembly of nanoparticles in the microvolume of colloidal solution: Physics, modeling, and experiment. Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2013, v. 8(3-4), pр. 137–162. https://doi.org/10.1134/S1995078013020110 Walker D. A., Kowalczyk B., Cruz M. O., Grzybowski B. A. Electrostatics at the nanoscale. Nanoscale, 2011, v. 3(4), pp. 1316–1344. https://doi.org/10.1039/C0NR00698J Ouyang Q., Castets V., Boissonade J., et al. Sustained patterns in chlorite–iodide reactions in a onedimensional reactor. J. Chem. Phys., 1991, v. 95(1), pp. 351–360. https://doi.org/10.1063/1.461490 Tarasevich Yu. Yu., Pravoslavnova D. M. Kachestvennyy analiz zakonomernostey vysykhaniya kapli mnogokomponentnogo rastvora na tverdoy podlozhke [Qualitative analysis of patterns of drying of a drop of a multicomponent solution on a solid substrate], Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, vol. 77, no. 2. pp. 17–21. URL: http://journals.ioffe. ru/articles/viewPDF/9047 (in Russ.) Faigl’ F., Anger V. Kapel’nyi analiz neorganicheskikh veshchestv [Drip Analysis of Inorganic Substances]. Moscow, Mir Publ., 1976, v. 1, 390 p., v. 2, 320 p. (in Russ.) Yakhno T. A., Kazakov V. V., Sanina O. A., Sanin A. G., Yakhno V. G. Kapli biologicheskikh zhidkostey, vysykhayushchie na tverdoy podlozhke: dinamika morfologii, massy, temperatury i mekhanicheskikh svoystv [Drops of biological fluids drying on a solid substrate: dynamics of morphology, mass, temperature, and mechanical properties]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2010, v. 80(7), pp. 17–23. URL: http://journals.ioffe.ru/articles/viewPDF/10043 (in Russ.) Alfi mov M. V., Kadushnikov R. M., Shturkin N. A., Alievskii V. M., Lebedev-Stepanov P. V. Immitatsionnoe modelirovanie protsessov samoorganizatsii nanochastits [Simulation modeling of self-organization processes of nanoparticles], Rossiiskie nanotekhnologii [Nanotechnologies in Russia], 2006, v. 1(1–2), pp. 127–133. (in Russ.) Lebedev-Stepanov P. V., Gromov S. P., Molchanov S. P., Chernyshov N. A., Batalov I. S., Sazonov S. K., Lobova N. A., Shevchenko N. N., Men’shikova A. Yu., Alfimov M. V. Controlling the self-assemblage of modifi ed colloid particle ensembles in solution microdropletsRossiiskie nanotekhnologii [Nanotechnologies in Russia], 2011, v. 6(9–10), 569–578, pp. 72–78. https://doi.org/10.1134/S1995078011050119 Andreeva L. V., Novoselova A. S., Lebedev-Stepanov P. V., Ivanov D. A., Koshkin A. V., Petrov A. N., Alfi mov M. V. Zakonomernosti kristallizatsii rastvorennykh veshchestv iz mikrokapli [Patterns of crystallization of dissolved substances from microdrops]. Zhurnal tekhnicheskoi fi ziki [Technical Physics], 2007, v. 77(2), pp. 22–30. URL: http://journals.ioffe.ru/articles/view-PDF/9048 (in Russ.) Barash L. Yu. Marangoni convection in an evaporating droplet: Analytical and numerical descriptions. International Journal of Heat and Mass Transfer, 2016, v. 102, pp. 445–454. https://doi.org/10.1016/j.ijh eatmasstransfer.2016.06.042 al Bityutskaya L. A., Zhukalin D. A., Tuchin A. V., Frolov A. A., Buslov V. A. Thermal dissipative structures in the case of carbon nanotubes aggregation in drying drops. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2014, v. 16(4), pp. 425–430. URL: https://journals.vsu.ru/kcmf/ article/view/856/937 (in Russ.) Asakura S., Oosawa F. Interaction between particles suspended in solutions of macromolecules. Polymer Science Part A: General Papers, 1958, v. 33(126), pp. 183–192. https://doi.org/10.1002/pol.1958.1203312618 Minton A. P. How can biochemical reactions within cells differ from those in test tubes? Journal of Cell Science, 2015, v. 119(14), pp. 2863–2869. https://doi.org/10.1242/jcs.03063 Chebotareva N. A., Kurganov B. I., Livanova N. B. Biochemical effects of molecular crowding. Biohimija [Biochemistry], 2004, v. 69(11), pp. 1239–1251. https://doi.org/10.1007/s10541-005-0070-y Bishop K. J., Wilmer C. E., Soh S., Grzybowski B. A. Nanoscale forces and their uses in self-assembly. Small, 2009, v. 5(14), p. 1600–1630. https://doi.org/10.1002/smll.200900358 Minton A. P. The infl uence of macromolecular crowding and macromolecular confi nement on biochemical reactions in physiological media. Journal of Biological Chemistry, v. 276(14), pp. 10577–10580. https://doi.org/10.1074/jbc.r100005200 Huber F., Strehle D., Schnauss J., Kas J. Formation of regularly spaced networks as a general feature of actin bundle condensation by entropic forces. New J. Physics, 2015, v. 17(4), p. 043029. https://doi.org/10.1088/1367-2630/17/4/043029 Jiang H., Wada H., Yoshinaga N., Sano M. Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Physical Review Letters, 2009, v. 102(20), p. 208301. https://doi.org/10.1103/physrevlett.102.208301 Deng H., Li G., Liu H. Assembling of three-dimensional crystals by optical depletion force induced by a single focused laser beam. Optics Express, 2012, v. 20(9), p. 9616. https://doi.org/10.1364/oe.20.009616 Wulfert R., Seiferta U., Speck T. Nonequilibrium depletion interactions in active microrheology. Soft Matter, 2017, v. 13(48), p. 9093–9102. https://doi.org/10.1039/c7sm01737e Dolgih I. I., Bitutskaya L. A. Entropy driven aggregation of CNT in a drying drop on hydrophilic and hydrophobic substrate. Kondensirovannye sredy i mezhfaznye granitsy [Condensed Matter and Interphase], 2018, v. 20(4), p. 664–668. https://doi.org/10.17308/kcmf.2018.20/635
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气溶胶系统中的集体动力学和比例相变效应是聚苯乙烯乳胶。
1242 / jcs.03063张建军,李建军,李建军,等。分子拥挤的生物化学效应。生物化学[j], 2004, v. 69(11), pp. 1239-1251。https://doi.org/10.1007/s10541-005-0070-y Bishop K. J, Wilmer C. E, Soh S., Grzybowski B. A.纳米尺度力及其在自组装中的应用。书刊,2009,vol . 5(14), p. 1600-1630。https://doi.org/10.1002/smll.200900358 Minton A. P.大分子拥挤和大分子确认对生理介质中生化反应的影响。生物化学学报,v. 276(14), pp. 10577-10580。https://doi.org/10.1074/jbc.r100005200 Huber F., Strehle D., Schnauss J., Kas J.肌动蛋白束在熵力作用下凝聚的一般特征。物理学报,2015,vol . 17(4), p. 043029。https://doi.org/10.1088/1367-2630/17/4/043029江辉,和田辉,吉永N,佐野M.温度梯度下非平衡耗尽力对胶体的操纵。物理评论,2009,v. 102(20), p. 208301。https://doi.org/10.1103/physrevlett.102.208301邓宏,李光,刘宏。单聚焦激光束光耗尽力诱导三维晶体组装。光学精密工程,2012,vol . 20(9), p. 916。https://doi.org/10.1364/oe.20.009616 Wulfert R., Seiferta U., Speck T.。活性微流变中的非平衡耗竭相互作用。软物质,2017,v. 13(48), p. 9093-9102。https://doi.org/10.1039/c7sm01737e Dolgih I. I. Bitutskaya L. a .熵驱动碳纳米管在亲水和疏水基质上的聚集。[j] .岩石力学与工程学报,2018,35(4):664-668。https://doi.org/10.17308/kcmf.2018.20/635
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dps protein localization studies in nanostructured silicon matrix by scanning electron microscopy Phase formation in the Ag2MoO4–Rb2MoO4–Hf(MoO4)2 system High-temperature spectrophotometry of indium chloride vapours as a method of study of the In – Se system Electrodialysis of a sodium sulphate solution with experimental bentonite-modified bipolar membranes Synthesis of chitosan and N-vinylimidazole graft-copolymers and the properties of their aqueous solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1