Variable selection and debiased estimation for single-index expectile model

Pub Date : 2022-02-02 DOI:10.1111/anzs.12348
Rong Jiang, Yexun Peng, Yufei Deng
{"title":"Variable selection and debiased estimation for single-index expectile model","authors":"Rong Jiang,&nbsp;Yexun Peng,&nbsp;Yufei Deng","doi":"10.1111/anzs.12348","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This article develops a penalised asymmetric least squares estimator for single-index expectile model. The oracle property of the proposed estimator is established. Moreover, the debiasing technique is used to construct an estimator that is asymptotically normal, which enables the construction of valid confidence intervals and hypothesis testing. Simulation studies and one real data application are conducted to illustrate the finite sample performance of the proposed methods.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article develops a penalised asymmetric least squares estimator for single-index expectile model. The oracle property of the proposed estimator is established. Moreover, the debiasing technique is used to construct an estimator that is asymptotically normal, which enables the construction of valid confidence intervals and hypothesis testing. Simulation studies and one real data application are conducted to illustrate the finite sample performance of the proposed methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
单指标期望模型的变量选择与去偏估计
本文提出了单指标期望模型的惩罚非对称最小二乘估计。建立了该估计器的预言性。此外,利用消偏技术构造渐近正态的估计量,使有效置信区间的构造和假设检验成为可能。通过仿真研究和一个实际数据应用来说明所提出方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1