Macro and micro damage analysis and parameter inversion of HTPB adhesive Interface based on DIC and FEMU

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Composite Interfaces Pub Date : 2023-04-10 DOI:10.1080/09276440.2023.2200619
Yongqiang Li, Weimin Lv, Gaochun Li, H. Zang
{"title":"Macro and micro damage analysis and parameter inversion of HTPB adhesive Interface based on DIC and FEMU","authors":"Yongqiang Li, Weimin Lv, Gaochun Li, H. Zang","doi":"10.1080/09276440.2023.2200619","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to realize the quantitative analysis of the structural integrity and damage evolution of hydroxyl-terminated polybutadiene (HTPB) composite solid propellant under external load, the loading failure experiments were carried out on the macro rectangular specimen and the micro specimen, and the numerical analysis of the strain evolution process in the region of interest (ROI) of the specimen was carried out using digital image correlation (DIC). At the same time, with the help of finite element model updating (FEMU) method, the mechanical and cohesion parameters of the specimen were inversed using the combination of adaptive particle swarm optimization (APSO), back propagation (BP) and Hooke-Jeeves algorithm, and the simulation of the whole process of propellant damage and fracture was realized from the microscopic point of view. The results show that inhibiting the debonding of propellant/liner interface is the key to maintain the structural integrity. It starts with the damage and fracture of the propellant side. A scanning electron microscope (SEM) in-situ dynamic tensile test shows that the initial damage occurs at the strain of 27.368%, and the through-type crack propagates along the interface when the strain reaches 43.276%. In addition, the use of combinatorial optimization algorithm can realize the global optimal inversion of 16 parameters divided into three types in 100 complete calculations, reduce the optimal objective function value to 0.0251, and assist the finite element calculation to realize the quantitative analysis and accurate simulation of the experimental process. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"5 1","pages":"1201 - 1226"},"PeriodicalIF":2.1000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2200619","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT In order to realize the quantitative analysis of the structural integrity and damage evolution of hydroxyl-terminated polybutadiene (HTPB) composite solid propellant under external load, the loading failure experiments were carried out on the macro rectangular specimen and the micro specimen, and the numerical analysis of the strain evolution process in the region of interest (ROI) of the specimen was carried out using digital image correlation (DIC). At the same time, with the help of finite element model updating (FEMU) method, the mechanical and cohesion parameters of the specimen were inversed using the combination of adaptive particle swarm optimization (APSO), back propagation (BP) and Hooke-Jeeves algorithm, and the simulation of the whole process of propellant damage and fracture was realized from the microscopic point of view. The results show that inhibiting the debonding of propellant/liner interface is the key to maintain the structural integrity. It starts with the damage and fracture of the propellant side. A scanning electron microscope (SEM) in-situ dynamic tensile test shows that the initial damage occurs at the strain of 27.368%, and the through-type crack propagates along the interface when the strain reaches 43.276%. In addition, the use of combinatorial optimization algorithm can realize the global optimal inversion of 16 parameters divided into three types in 100 complete calculations, reduce the optimal objective function value to 0.0251, and assist the finite element calculation to realize the quantitative analysis and accurate simulation of the experimental process. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DIC和FEMU的HTPB粘接界面宏微观损伤分析及参数反演
摘要:为了实现外载荷作用下HTPB复合固体推进剂结构完整性和损伤演化的定量分析,对宏观矩形试样和微观试样进行了加载破坏实验,并利用数字图像相关技术(DIC)对试样感兴趣区域(ROI)应变演化过程进行了数值分析。同时,借助有限元模型更新(FEMU)方法,结合自适应粒子群优化(APSO)、反向传播(BP)和Hooke-Jeeves算法对试件的力学参数和黏聚参数进行了反演,从微观角度实现了推进剂损伤断裂全过程的模拟。结果表明,抑制推进剂/衬垫界面的脱粘是保持结构完整性的关键。它开始于推进剂一侧的损坏和断裂。扫描电镜(SEM)原位动态拉伸试验表明,在应变为27.368%时出现初始损伤,当应变达到43.276%时,贯通型裂纹沿界面扩展。此外,利用组合优化算法,可在100次完整计算中实现分三类的16个参数的全局最优反演,将最优目标函数值降至0.0251,并辅助有限元计算实现对实验过程的定量分析和精确模拟。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
期刊最新文献
Characterization of composite materials with recycled wind turbine blade additives using atomic force microscopy Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test? Influence of argon plasma treatment on interfacial performance of CFRP at high temperature Hygrothermal effect and statistical analysis of the interfacial performance of nano and microscale polymer composites Current trends and future directions in Si-based MXene composites for enhanced lithium-ion battery applications: a comperehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1