On the Calculation of Optimality Ranges for Relational Query Execution Plans

Florian Wolf, Norman May, P. Willems, K. Sattler
{"title":"On the Calculation of Optimality Ranges for Relational Query Execution Plans","authors":"Florian Wolf, Norman May, P. Willems, K. Sattler","doi":"10.1145/3183713.3183742","DOIUrl":null,"url":null,"abstract":"Cardinality estimation is a crucial task in query optimization and typically relies on heuristics and basic statistical approximations. At execution time, estimation errors might result in situations where intermediate result sizes may differ from the estimated ones, so that the originally chosen plan is not the optimal plan anymore. In this paper we analyze the deviation from the estimate, and denote the cardinality range of an intermediate result, where the optimal plan remains optimal as the optimality range. While previous work used simple heuristics to calculate similar ranges, we generate the precise bounds for the optimality range considering all relevant plan alternatives. Our experimental results show that the fixed optimality ranges used in previous work fail to characterize the range of cardinalities where a plan is optimal. We derive theoretical worst case bounds for the number of enumerated plans required to compute the precise optimality range, and experimentally show that in real queries this number is significantly smaller. Our experiments also show the benefit for applications like Mid-Query Re-Optimization in terms of significant execution time improvement.","PeriodicalId":20430,"journal":{"name":"Proceedings of the 2018 International Conference on Management of Data","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3183713.3183742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Cardinality estimation is a crucial task in query optimization and typically relies on heuristics and basic statistical approximations. At execution time, estimation errors might result in situations where intermediate result sizes may differ from the estimated ones, so that the originally chosen plan is not the optimal plan anymore. In this paper we analyze the deviation from the estimate, and denote the cardinality range of an intermediate result, where the optimal plan remains optimal as the optimality range. While previous work used simple heuristics to calculate similar ranges, we generate the precise bounds for the optimality range considering all relevant plan alternatives. Our experimental results show that the fixed optimality ranges used in previous work fail to characterize the range of cardinalities where a plan is optimal. We derive theoretical worst case bounds for the number of enumerated plans required to compute the precise optimality range, and experimentally show that in real queries this number is significantly smaller. Our experiments also show the benefit for applications like Mid-Query Re-Optimization in terms of significant execution time improvement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关系型查询执行计划的最优范围计算
基数估计是查询优化中的一项关键任务,通常依赖于启发式和基本统计近似。在执行时,估计错误可能会导致中间结果大小与估计结果大小不同的情况,因此最初选择的计划不再是最优计划。在本文中,我们分析了与估计的偏差,并表示中间结果的基数范围,其中最优方案保持最优作为最优范围。虽然以前的工作使用简单的启发式方法来计算类似的范围,但我们考虑所有相关的计划替代方案,为最优范围生成精确的界限。我们的实验结果表明,在以前的工作中使用的固定最优性范围不能表征计划最优的基数范围。我们为计算精确的最优范围所需的枚举计划数量导出了理论上的最坏情况界限,并且实验表明,在实际查询中,这个数字要小得多。我们的实验还显示了在显著改善执行时间方面,对诸如中期查询重新优化之类的应用程序的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meta-Dataflows: Efficient Exploratory Dataflow Jobs Columnstore and B+ tree - Are Hybrid Physical Designs Important? Demonstration of VerdictDB, the Platform-Independent AQP System Efficient Selection of Geospatial Data on Maps for Interactive and Visualized Exploration Session details: Keynote1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1