Multi-view Dynamic Shape Refinement Using Local Temporal Integration

Vincent Leroy, Jean-Sébastien Franco, Edmond Boyer
{"title":"Multi-view Dynamic Shape Refinement Using Local Temporal Integration","authors":"Vincent Leroy, Jean-Sébastien Franco, Edmond Boyer","doi":"10.1109/ICCV.2017.336","DOIUrl":null,"url":null,"abstract":"We consider 4D shape reconstructions in multi-view environments and investigate how to exploit temporal redundancy for precision refinement. In addition to being beneficial to many dynamic multi-view scenarios this also enables larger scenes where such increased precision can compensate for the reduced spatial resolution per image frame. With precision and scalability in mind, we propose a symmetric (non-causal) local time-window geometric integration scheme over temporal sequences, where shape reconstructions are refined framewise by warping local and reliable geometric regions of neighboring frames to them. This is in contrast to recent comparable approaches targeting a different context with more compact scenes and real-time applications. These usually use a single dense volumetric update space or geometric template, which they causally track and update globally frame by frame, with limitations in scalability for larger scenes and in topology and precision with a template based strategy. Our templateless and local approach is a first step towards temporal shape super-resolution. We show that it improves reconstruction accuracy by considering multiple frames. To this purpose, and in addition to real data examples, we introduce a multi-camera synthetic dataset that provides ground-truth data for mid-scale dynamic scenes.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"21 1","pages":"3113-3122"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

We consider 4D shape reconstructions in multi-view environments and investigate how to exploit temporal redundancy for precision refinement. In addition to being beneficial to many dynamic multi-view scenarios this also enables larger scenes where such increased precision can compensate for the reduced spatial resolution per image frame. With precision and scalability in mind, we propose a symmetric (non-causal) local time-window geometric integration scheme over temporal sequences, where shape reconstructions are refined framewise by warping local and reliable geometric regions of neighboring frames to them. This is in contrast to recent comparable approaches targeting a different context with more compact scenes and real-time applications. These usually use a single dense volumetric update space or geometric template, which they causally track and update globally frame by frame, with limitations in scalability for larger scenes and in topology and precision with a template based strategy. Our templateless and local approach is a first step towards temporal shape super-resolution. We show that it improves reconstruction accuracy by considering multiple frames. To this purpose, and in addition to real data examples, we introduce a multi-camera synthetic dataset that provides ground-truth data for mid-scale dynamic scenes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部时间积分的多视图动态形状优化
我们考虑了多视图环境下的四维形状重建,并研究了如何利用时间冗余进行精度改进。除了对许多动态多视图场景有益之外,它还支持更大的场景,在这些场景中,这样增加的精度可以补偿每帧图像降低的空间分辨率。考虑到精度和可扩展性,我们在时间序列上提出了一种对称(非因果)局部时间窗几何积分方案,其中形状重构通过将邻近帧的局部和可靠几何区域扭曲到它们来细化帧。这与最近针对更紧凑的场景和实时应用程序的不同上下文的类似方法形成鲜明对比。它们通常使用单个密集的体积更新空间或几何模板,它们会逐帧跟踪和全局更新,这在较大场景的可扩展性以及基于模板的策略的拓扑和精度方面存在限制。我们的无模板和局部方法是向时间形状超分辨率迈出的第一步。我们证明了该方法通过考虑多帧来提高重建精度。为此,除了真实的数据示例外,我们还引入了一个多相机合成数据集,该数据集为中等规模的动态场景提供了真实的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1