Arunakumar Hunasanahally Sathyanarayana, P. Suvarna, Pruthviraj Umesh, K. G. Shirlal
{"title":"Investigation on innovative pile head breakwater for coastal protection","authors":"Arunakumar Hunasanahally Sathyanarayana, P. Suvarna, Pruthviraj Umesh, K. G. Shirlal","doi":"10.1177/14750902231155677","DOIUrl":null,"url":null,"abstract":"Coastal erosion is a global concern that has been augmenting due to the natural evolution of beaches, human activities and sea-level rise. One of the eco-friendly shore protection methods is to dissipate the wave energy by constructing offshore breakwaters. Conical pile head breakwater (CPHB) is one of the eco-friendly innovative offshore structures consisting of closely spaced piles with an enlarged cross-sectional area (conical pile head) in the vicinity of the free surface. In the present study, perforations are incorporated over the conical pile head to achieve higher efficiency by promoting energy dissipation. The influence of the perforations on the performance characteristics, namely wave transmission (Kt), wave reflection (Kr) and energy dissipation (Kd) of the perforated CPHB is comprehensively investigated through physical model studies. The effect of perforations and their distribution around the pile head (Pa), percentage of perforation (P) and size of perforations (S/D) on the wave attenuation characteristics are evaluated to arrive at an optimum configuration. The study is carried out under monochromatic waves of varying wave height (0.06–0.16 m) and wave period (1.4–2 s) at different depths of water (0.35, 0.40 and 0.45 m). A minimum Kt of 0.58 associated with Kr of 0.26 and Kd of 0.78 is obtained with an optimum configuration of Pa = 50%, P = 19.2% and S/D = 0.25. The Kt of the proposed CPHB is about 19 to 35% lesser than that of the perforated hollow pile breakwater under matching test conditions. Overall, providing the perforations is found to be effective in enhancing the wave attenuation capability by up to 12.4%. Further, empirical equations are formulated and validated with the experimental data. The empirical equations estimate the Kt and Kr values accurately with a high coefficient of determination ( R2 ≥ 0.90).","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"22 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231155677","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Coastal erosion is a global concern that has been augmenting due to the natural evolution of beaches, human activities and sea-level rise. One of the eco-friendly shore protection methods is to dissipate the wave energy by constructing offshore breakwaters. Conical pile head breakwater (CPHB) is one of the eco-friendly innovative offshore structures consisting of closely spaced piles with an enlarged cross-sectional area (conical pile head) in the vicinity of the free surface. In the present study, perforations are incorporated over the conical pile head to achieve higher efficiency by promoting energy dissipation. The influence of the perforations on the performance characteristics, namely wave transmission (Kt), wave reflection (Kr) and energy dissipation (Kd) of the perforated CPHB is comprehensively investigated through physical model studies. The effect of perforations and their distribution around the pile head (Pa), percentage of perforation (P) and size of perforations (S/D) on the wave attenuation characteristics are evaluated to arrive at an optimum configuration. The study is carried out under monochromatic waves of varying wave height (0.06–0.16 m) and wave period (1.4–2 s) at different depths of water (0.35, 0.40 and 0.45 m). A minimum Kt of 0.58 associated with Kr of 0.26 and Kd of 0.78 is obtained with an optimum configuration of Pa = 50%, P = 19.2% and S/D = 0.25. The Kt of the proposed CPHB is about 19 to 35% lesser than that of the perforated hollow pile breakwater under matching test conditions. Overall, providing the perforations is found to be effective in enhancing the wave attenuation capability by up to 12.4%. Further, empirical equations are formulated and validated with the experimental data. The empirical equations estimate the Kt and Kr values accurately with a high coefficient of determination ( R2 ≥ 0.90).
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.