{"title":"A two-variable series for knot complements","authors":"S. Gukov, Ciprian Manolescu","doi":"10.4171/QT/145","DOIUrl":null,"url":null,"abstract":"The physical 3d $\\mathcal{N}=2$ theory T[Y] was previously used to predict the existence of some 3-manifold invariants $\\hat{Z}_{a}(q)$ that take the form of power series with integer coefficients, converging in the unit disk. Their radial limits at the roots of unity should recover the Witten-Reshetikhin-Turaev invariants. In this paper we discuss how, for complements of knots in $S^3$, the analogue of the invariants $\\hat{Z}_{a}(q)$ should be a two-variable series $F_K(x,q)$ obtained by parametric resurgence from the asymptotic expansion of the colored Jones polynomial. The terms in this series should satisfy a recurrence given by the quantum A-polynomial. Furthermore, there is a formula that relates $F_K(x,q)$ to the invariants $\\hat{Z}_{a}(q)$ for Dehn surgeries on the knot. We provide explicit calculations of $F_K(x,q)$ in the case of knots given by negative definite plumbings with an unframed vertex, such as torus knots. We also find numerically the first terms in the series for the figure-eight knot, up to any desired order, and use this to understand $\\hat{Z}_a(q)$ for some hyperbolic 3-manifolds.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"82 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/QT/145","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 75
Abstract
The physical 3d $\mathcal{N}=2$ theory T[Y] was previously used to predict the existence of some 3-manifold invariants $\hat{Z}_{a}(q)$ that take the form of power series with integer coefficients, converging in the unit disk. Their radial limits at the roots of unity should recover the Witten-Reshetikhin-Turaev invariants. In this paper we discuss how, for complements of knots in $S^3$, the analogue of the invariants $\hat{Z}_{a}(q)$ should be a two-variable series $F_K(x,q)$ obtained by parametric resurgence from the asymptotic expansion of the colored Jones polynomial. The terms in this series should satisfy a recurrence given by the quantum A-polynomial. Furthermore, there is a formula that relates $F_K(x,q)$ to the invariants $\hat{Z}_{a}(q)$ for Dehn surgeries on the knot. We provide explicit calculations of $F_K(x,q)$ in the case of knots given by negative definite plumbings with an unframed vertex, such as torus knots. We also find numerically the first terms in the series for the figure-eight knot, up to any desired order, and use this to understand $\hat{Z}_a(q)$ for some hyperbolic 3-manifolds.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.