Python Code and Illustrative Crisis Management Data from Twitter

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS African Journal of Information Systems Pub Date : 2022-06-21 DOI:10.2308/isys-2022-011
Y. Wang, T. Wang
{"title":"Python Code and Illustrative Crisis Management Data from Twitter","authors":"Y. Wang, T. Wang","doi":"10.2308/isys-2022-011","DOIUrl":null,"url":null,"abstract":"This paper presents the Python code and illustrative crisis management data from Twitter. The code includes Twitter data collection and three machine learning algorithms that are readily usable. Three machine learning algorithms generate sentiment measures, extract topics from the tweets and, compare the similarity of topics across time. The code and the illustrative data will be accessible to researchers that are interested in using Twitter data to analyze a wide range of public perceptions and responses such as StockTwits activity; firm events such as the announcement of investment decisions or security breaches; public movements such as #earthday; and significant global events such as the invasion of Ukraine. A better understanding of the code and datasets will enable researchers in this field to engage in more extensive studies that fully utilize this rich data source to capture public perceptions.","PeriodicalId":42112,"journal":{"name":"African Journal of Information Systems","volume":"35 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2308/isys-2022-011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the Python code and illustrative crisis management data from Twitter. The code includes Twitter data collection and three machine learning algorithms that are readily usable. Three machine learning algorithms generate sentiment measures, extract topics from the tweets and, compare the similarity of topics across time. The code and the illustrative data will be accessible to researchers that are interested in using Twitter data to analyze a wide range of public perceptions and responses such as StockTwits activity; firm events such as the announcement of investment decisions or security breaches; public movements such as #earthday; and significant global events such as the invasion of Ukraine. A better understanding of the code and datasets will enable researchers in this field to engage in more extensive studies that fully utilize this rich data source to capture public perceptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Python代码和Twitter的说明性危机管理数据
本文介绍了Python代码和来自Twitter的说明性危机管理数据。该代码包括Twitter数据收集和三种易于使用的机器学习算法。三种机器学习算法生成情绪度量,从推文中提取主题,并比较不同时间主题的相似性。代码和说明性数据将对有兴趣使用Twitter数据分析广泛的公众看法和反应(如StockTwits活动)的研究人员开放;重大事件,如宣布投资决定或安全漏洞;#地球日#等公共运动;以及入侵乌克兰等重大全球事件。更好地理解代码和数据集将使该领域的研究人员能够进行更广泛的研究,充分利用这一丰富的数据源来捕捉公众的看法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
African Journal of Information Systems
African Journal of Information Systems COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
14.30%
发文量
0
审稿时长
30 weeks
期刊最新文献
The Informativeness of Sentiment Types in Risk Factor Disclosures: Evidence from Firms with Cybersecurity Breaches Does XBRL Tagging Indicate Disclosure Quality? The Relationship Between XBRL Standard and Extension Tags and Stock Return Synchronicity Constituent Input on Regulatory Initiatives: A Machine-Learning Approach to Efficiently and Effectively Analyze Unstructured Data Application of Latent Semantic Analysis in Accounting Research Designing a Classifying System for Nonprofit Organizations Using Textual Contents from the Mission Statement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1