{"title":"Online Estimation of Geometric and Inertia Parameters for Multirotor Aerial Vehicles","authors":"Valentin Wüest, Vijay R. Kumar, Giuseppe Loianno","doi":"10.1109/ICRA.2019.8794274","DOIUrl":null,"url":null,"abstract":"Accurate knowledge of geometric and inertia parameters are a necessity for precise and robust control of aerial vehicles. We propose a novel filter that is able to fuse motor speed, inertia, and pose measurements to estimate the vehicle’s key dynamic properties online. The presented framework is able to estimate the multirotor’s moment of inertia, mass, center of mass and each sensor module’s relative position. Obtaining these estimates in-flight allow the multirotor to be precisely controlled even during tasks such as load transportation or after configuration changes on scene. We provide a nonlinear observability analysis, proving that the presented model is locally weakly observable. Experimental results validate the proposed approach, showing the ability to estimate the dynamic properties accurately and demonstrate its capability to do so even while additional loads are added. The framework is flexible and can easily be adapted to a wide range of applications, including self-calibration, object grasping, and single robot or multi-robot payload transportation.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"6 1","pages":"1884-1890"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27
Abstract
Accurate knowledge of geometric and inertia parameters are a necessity for precise and robust control of aerial vehicles. We propose a novel filter that is able to fuse motor speed, inertia, and pose measurements to estimate the vehicle’s key dynamic properties online. The presented framework is able to estimate the multirotor’s moment of inertia, mass, center of mass and each sensor module’s relative position. Obtaining these estimates in-flight allow the multirotor to be precisely controlled even during tasks such as load transportation or after configuration changes on scene. We provide a nonlinear observability analysis, proving that the presented model is locally weakly observable. Experimental results validate the proposed approach, showing the ability to estimate the dynamic properties accurately and demonstrate its capability to do so even while additional loads are added. The framework is flexible and can easily be adapted to a wide range of applications, including self-calibration, object grasping, and single robot or multi-robot payload transportation.