Photovoltaic Power Forecasting based on Artificial Neural Network and Ultraviolet Index

Q3 Computer Science International Journal of Computing Pub Date : 2022-06-30 DOI:10.47839/ijc.21.2.2583
Li Sun, Yanxia Sun
{"title":"Photovoltaic Power Forecasting based on Artificial Neural Network and Ultraviolet Index","authors":"Li Sun, Yanxia Sun","doi":"10.47839/ijc.21.2.2583","DOIUrl":null,"url":null,"abstract":"The accuracy of photovoltaic (PV) power generation forecast can seriously affect the penetration ability of PV power into the existing power grid, which is one of the key approaches to achieve emission peak, as well as realize carbon neutrality. In the conventional forecasting methods, Global Horizontal Irradiation (GHI), Diffuse Horizontal Irradiance (DHI), temperature, wind speed, rainfall, etc. are considered as the mainly factors to forecast the PV output power, but ignore the impact of PV power generation caused by the whole PV system’s decay over the 25–30 years lifecycle. The ultraviolet (UV) index, which reflects the quantity of 10–400 nm irradiation, has a strong correlation with such decay and power generation. This paper proposes a novel PV power forecasting model that involving UV index in an artificial neural network, using Adam method to optimize the training process with the Keras-tuner employed for optimization of the hyperparameters. Experiments demonstrate that the proposed model achieves more precise performance than conventional methods.","PeriodicalId":37669,"journal":{"name":"International Journal of Computing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47839/ijc.21.2.2583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

The accuracy of photovoltaic (PV) power generation forecast can seriously affect the penetration ability of PV power into the existing power grid, which is one of the key approaches to achieve emission peak, as well as realize carbon neutrality. In the conventional forecasting methods, Global Horizontal Irradiation (GHI), Diffuse Horizontal Irradiance (DHI), temperature, wind speed, rainfall, etc. are considered as the mainly factors to forecast the PV output power, but ignore the impact of PV power generation caused by the whole PV system’s decay over the 25–30 years lifecycle. The ultraviolet (UV) index, which reflects the quantity of 10–400 nm irradiation, has a strong correlation with such decay and power generation. This paper proposes a novel PV power forecasting model that involving UV index in an artificial neural network, using Adam method to optimize the training process with the Keras-tuner employed for optimization of the hyperparameters. Experiments demonstrate that the proposed model achieves more precise performance than conventional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络和紫外线指数的光伏发电功率预测
光伏发电预测的准确性会严重影响光伏发电对现有电网的渗透能力,而光伏发电渗透能力是实现排放峰值、实现碳中和的关键途径之一。在传统的预测方法中,将全球水平辐照(GHI)、漫射水平辐照(DHI)、温度、风速、降雨等作为预测光伏发电输出功率的主要因素,而忽略了整个光伏系统在25 ~ 30年生命周期内的衰减对光伏发电的影响。紫外(UV)指数反映了10-400 nm辐照量,与这种衰变和发电量有很强的相关性。本文提出了一种将UV指数纳入人工神经网络的光伏发电功率预测模型,采用Adam方法对训练过程进行优化,并采用keras调谐器对超参数进行优化。实验表明,该模型比传统方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Computing
International Journal of Computing Computer Science-Computer Science (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
39
期刊介绍: The International Journal of Computing Journal was established in 2002 on the base of Branch Research Laboratory for Automated Systems and Networks, since 2005 it’s renamed as Research Institute of Intelligent Computer Systems. A goal of the Journal is to publish papers with the novel results in Computing Science and Computer Engineering and Information Technologies and Software Engineering and Information Systems within the Journal topics. The official language of the Journal is English; also papers abstracts in both Ukrainian and Russian languages are published there. The issues of the Journal are published quarterly. The Editorial Board consists of about 30 recognized worldwide scientists.
期刊最新文献
Website Quality Measurement of Educational Government Agency in Indonesia using Modified WebQual 4.0 A Comparative Study of Data Annotations and Fluent Validation in .NET Attr4Vis: Revisiting Importance of Attribute Classification in Vision-Language Models for Video Recognition The Improved Method for Identifying Parameters of Interval Nonlinear Models of Static Systems Image Transmission in WMSN Based on Residue Number System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1