A Two-Phase Object Detection Solution for Aerial Images

Chen Xing, Xi Liang, Pengliang Zhang
{"title":"A Two-Phase Object Detection Solution for Aerial Images","authors":"Chen Xing, Xi Liang, Pengliang Zhang","doi":"10.1109/ICCSNT50940.2020.9305002","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-phase solution for aerial inspecting. First phase focuses on removing images with no abnormal, modified YOLOv3 is used in this phase. Second phase focuses on target locating and identifying, modified SSD is applied in this phase. The experiment result shows the modified YOLOv3 get 2.2% higher accuracy than original design, and the miss rate of detecting images with no abnormal is only 2.6%.","PeriodicalId":6794,"journal":{"name":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","volume":"163 1","pages":"119-122"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 8th International Conference on Computer Science and Network Technology (ICCSNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSNT50940.2020.9305002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a two-phase solution for aerial inspecting. First phase focuses on removing images with no abnormal, modified YOLOv3 is used in this phase. Second phase focuses on target locating and identifying, modified SSD is applied in this phase. The experiment result shows the modified YOLOv3 get 2.2% higher accuracy than original design, and the miss rate of detecting images with no abnormal is only 2.6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
航空图像的两阶段目标检测解决方案
本文提出了一种航空检测的两阶段解决方案。第一阶段的重点是去除没有异常的图像,这一阶段使用修改后的YOLOv3。第二阶段以目标定位和识别为重点,采用改进的固态硬盘。实验结果表明,改进后的YOLOv3比原设计提高了2.2%的准确率,对无异常图像的检测失误率仅为2.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Optimal Rescheduling Mode of Flexible Job Shop Under the Arrival of a New Job Object Detection on Aerial Image by Using High-Resolutuion Network An Improved Ant Colony Algorithm is Proposed to Solve the Single Objective Flexible Job-shop Scheduling Problem RFID Network Planning for Flexible Manufacturing Workshop with Multiple Coverage Requirements Grounding Pile Detection System based on Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1