{"title":"Inhibition of Vascular Smooth Muscle Cell Proliferation, Migration, and Survival by the Tumor Suppressor Protein PTEN","authors":"Jianhua Huang, C. Kontos","doi":"10.1161/01.ATV.0000016358.05294.8D","DOIUrl":null,"url":null,"abstract":"Phosphatidylinositol (PI) 3-kinase signaling regulates numerous cellular processes, including proliferation, migration, and survival, which are required for neointimal hyperplasia and restenosis. The effectors of PI 3-kinase are activated by the phospholipid products of PI 3-kinase. In this report, we investigated the hypothesis that overexpression of the tumor suppressor protein PTEN, an inositol phosphatase specific for the products of PI 3-kinase, would inhibit the vascular smooth muscle cell (VSMC) responses necessary for neointimal hyperplasia and restenosis. Effects of PTEN were assessed in primary rabbit VSMCs after overexpression with a recombinant adenovirus and compared with uninfected or control virus-infected cells. PTEN was expressed endogenously in VSMCs, and PTEN overexpression inhibited PDGF-induced phosphorylation of p70s6k, Akt, and glycogen synthase kinase-3-&agr; and -&bgr; but not ERK1 or -2. Overexpression of PTEN significantly inhibited both basal and PDGF-mediated VSMC proliferation and migration, the latter possibly due in part to downregulation of focal adhesion kinase. Moreover, PTEN overexpression induced cleavage of caspase-3 and significantly increased apoptosis compared with control cells. Taken together, these results demonstrate that PTEN overexpression potently inhibits the VSMC responses required for neointimal hyperplasia and restenosis. Adenovirus-expressed PTEN may therefore provide a useful tool for the local treatment of these and other vascular proliferative disorders.","PeriodicalId":8418,"journal":{"name":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arteriosclerosis, Thrombosis, and Vascular Biology: Journal of the American Heart Association","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1161/01.ATV.0000016358.05294.8D","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102
Abstract
Phosphatidylinositol (PI) 3-kinase signaling regulates numerous cellular processes, including proliferation, migration, and survival, which are required for neointimal hyperplasia and restenosis. The effectors of PI 3-kinase are activated by the phospholipid products of PI 3-kinase. In this report, we investigated the hypothesis that overexpression of the tumor suppressor protein PTEN, an inositol phosphatase specific for the products of PI 3-kinase, would inhibit the vascular smooth muscle cell (VSMC) responses necessary for neointimal hyperplasia and restenosis. Effects of PTEN were assessed in primary rabbit VSMCs after overexpression with a recombinant adenovirus and compared with uninfected or control virus-infected cells. PTEN was expressed endogenously in VSMCs, and PTEN overexpression inhibited PDGF-induced phosphorylation of p70s6k, Akt, and glycogen synthase kinase-3-&agr; and -&bgr; but not ERK1 or -2. Overexpression of PTEN significantly inhibited both basal and PDGF-mediated VSMC proliferation and migration, the latter possibly due in part to downregulation of focal adhesion kinase. Moreover, PTEN overexpression induced cleavage of caspase-3 and significantly increased apoptosis compared with control cells. Taken together, these results demonstrate that PTEN overexpression potently inhibits the VSMC responses required for neointimal hyperplasia and restenosis. Adenovirus-expressed PTEN may therefore provide a useful tool for the local treatment of these and other vascular proliferative disorders.