Load forecasting assessment using SARIMA model and fuzzy inductive reasoning

N. G. Cabrera, G. Gutiérrez-Alcaraz, E. Gil
{"title":"Load forecasting assessment using SARIMA model and fuzzy inductive reasoning","authors":"N. G. Cabrera, G. Gutiérrez-Alcaraz, E. Gil","doi":"10.1109/IEEM.2013.6962474","DOIUrl":null,"url":null,"abstract":"Accurate load forecasting is critical for power systems planning, control, and operation. Poor forecasting in volatile power markets can have large, detrimental impacts on power system costs and real-time energy acquisition costs from distribution companies. This paper implements and compares two different methodologies for short term load forecasting: a classic statistical model (SARIMA model) and a model based on artificial intelligence (Fuzzy Inductive Reasoning, or FIR, model). A numerical example predicts one week for every methodology and the results are compared for both models.","PeriodicalId":6454,"journal":{"name":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"21 1","pages":"561-565"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2013.6962474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Accurate load forecasting is critical for power systems planning, control, and operation. Poor forecasting in volatile power markets can have large, detrimental impacts on power system costs and real-time energy acquisition costs from distribution companies. This paper implements and compares two different methodologies for short term load forecasting: a classic statistical model (SARIMA model) and a model based on artificial intelligence (Fuzzy Inductive Reasoning, or FIR, model). A numerical example predicts one week for every methodology and the results are compared for both models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SARIMA模型和模糊归纳推理的负荷预测评估
准确的负荷预测对电力系统的规划、控制和运行至关重要。在不稳定的电力市场中,糟糕的预测会对电力系统成本和配电公司的实时能源获取成本产生巨大的不利影响。本文实现并比较了两种不同的短期负荷预测方法:经典统计模型(SARIMA模型)和基于人工智能的模型(模糊归纳推理或FIR模型)。数值算例预测了每种方法的一周,并对两种模型的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extension of the PROMETHEE Method to the Multicriteria Dual Clustering Problem On the Necessity for Improving Effectiveness of Qualification Process for Spare Parts Additive Manufacturing in a Circular Economy Supply Chain Selecting Temporary Flood Shelter Locations by P-Center Model A Feasible Schema Design Strategy for Amazon DynamoDB: A Nested Normal Form Approach Flood Shelters Location Using P-median Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1