Chanwoo Kim, Tara N. Sainath, A. Narayanan, Ananya Misra, R. Nongpiur, M. Bacchiani
{"title":"Spectral Distortion Model for Training Phase-Sensitive Deep-Neural Networks for Far-Field Speech Recognition","authors":"Chanwoo Kim, Tara N. Sainath, A. Narayanan, Ananya Misra, R. Nongpiur, M. Bacchiani","doi":"10.1109/ICASSP.2018.8462223","DOIUrl":null,"url":null,"abstract":"In this paper, we present an algorithm which introduces phase-perturbation to the training database when training phase-sensitive deep neural-network models. Traditional features such as log-mel or cepstral features do not have have any phase-relevant information. However features such as raw-waveform or complex spectra features contain phase-relevant information. Phase-sensitive features have the advantage of being able to detect differences in time of arrival across different microphone channels or frequency bands. However, compared to magnitude-based features, phase information is more sensitive to various kinds of distortions such as variations in microphone characteristics, reverberation, and so on. For traditional magnitude-based features, it is widely known that adding noise or reverberation, often called Multistyle-TRaining (MTR), improves robustness. In a similar spirit, we propose an algorithm which introduces spectral distortion to make the deep-learning models more robust to phase-distortion. We call this approach Spectral-Distortion TRaining (SDTR). In our experiments using a training set consisting of 22-million utterances with and without MTR, this approach reduces Word Error Rates (WERs) relatively by 3.2 % and 8.48 % respectively on test sets recorded on Google Home.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"55 1","pages":"5729-5733"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we present an algorithm which introduces phase-perturbation to the training database when training phase-sensitive deep neural-network models. Traditional features such as log-mel or cepstral features do not have have any phase-relevant information. However features such as raw-waveform or complex spectra features contain phase-relevant information. Phase-sensitive features have the advantage of being able to detect differences in time of arrival across different microphone channels or frequency bands. However, compared to magnitude-based features, phase information is more sensitive to various kinds of distortions such as variations in microphone characteristics, reverberation, and so on. For traditional magnitude-based features, it is widely known that adding noise or reverberation, often called Multistyle-TRaining (MTR), improves robustness. In a similar spirit, we propose an algorithm which introduces spectral distortion to make the deep-learning models more robust to phase-distortion. We call this approach Spectral-Distortion TRaining (SDTR). In our experiments using a training set consisting of 22-million utterances with and without MTR, this approach reduces Word Error Rates (WERs) relatively by 3.2 % and 8.48 % respectively on test sets recorded on Google Home.