{"title":"Lung Lobe Segmentation and Feature Extraction-Based Hierarchical Attention Network for COVID-19 Prediction from Chest X-Ray Images","authors":"S. C. Magneta, C. Sundar, M. S. Thanabal","doi":"10.1093/comjnl/bxac136","DOIUrl":null,"url":null,"abstract":"\n Coronavirus disease 2019 (COVID-19) is a rising respiratory sickness. It causes harsh pneumonia and is considered to cover higher collisions in the healthcare domain. The diagnosis at an early stage is more complex to get accurate treatment for reducing the stress in the clinical sector. Chest X-ray scan is the standard imaging diagnosis test employed for pneumonia disease. Automatic detection of COVID-19 helps to control the community outbreak but tracing this viral infection through X-ray results in a challenging task in the medical community. To automatically detect the viral disease in order to reduce the mortality rate, an effective COVID-19 detection method is modelled in this research by the proposed manta-ray multi-verse optimization-based hierarchical attention network (MRMVO-based HAN) classifier. Accordingly, the MRMVO is the incorporation of manta-ray foraging optimization and multi-verse optimizer. Based on the segmented lung lobes, the features are acquired from segmented regions in such a way that the process of COVID-19 detection mechanism is carried out with the features acquired from interested lobe regions. The proposed method has good performance with the measures, such as accuracy, true positive rate and true negative rate with the values of 93.367, 89.921 and 95.071%.","PeriodicalId":21872,"journal":{"name":"South Afr. Comput. J.","volume":"39 1","pages":"508-522"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Afr. Comput. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxac136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Coronavirus disease 2019 (COVID-19) is a rising respiratory sickness. It causes harsh pneumonia and is considered to cover higher collisions in the healthcare domain. The diagnosis at an early stage is more complex to get accurate treatment for reducing the stress in the clinical sector. Chest X-ray scan is the standard imaging diagnosis test employed for pneumonia disease. Automatic detection of COVID-19 helps to control the community outbreak but tracing this viral infection through X-ray results in a challenging task in the medical community. To automatically detect the viral disease in order to reduce the mortality rate, an effective COVID-19 detection method is modelled in this research by the proposed manta-ray multi-verse optimization-based hierarchical attention network (MRMVO-based HAN) classifier. Accordingly, the MRMVO is the incorporation of manta-ray foraging optimization and multi-verse optimizer. Based on the segmented lung lobes, the features are acquired from segmented regions in such a way that the process of COVID-19 detection mechanism is carried out with the features acquired from interested lobe regions. The proposed method has good performance with the measures, such as accuracy, true positive rate and true negative rate with the values of 93.367, 89.921 and 95.071%.