Recognizing jumbled images: The role of local and global information in image classification

Devi Parikh
{"title":"Recognizing jumbled images: The role of local and global information in image classification","authors":"Devi Parikh","doi":"10.1109/ICCV.2011.6126283","DOIUrl":null,"url":null,"abstract":"The performance of current state-of-the-art computer vision algorithms at image classification falls significantly short as compared to human abilities. To reduce this gap, it is important for the community to know what problems to solve, and not just how to solve them. Towards this goal, via the use of jumbled images, we strip apart two widely investigated aspects: local and global information in images, and identify the performance bottleneck. Interestingly, humans have been shown to reliably recognize jumbled images. The goal of our paper is to determine a functional model that mimics how humans recognize jumbled images i.e. exploit local information alone, and further evaluate if existing implementations of this computational model suffice to match human performance. Surprisingly, in our series of human studies and machine experiments, we find that a simple bag-of-words based majority-vote-like strategy is an accurate functional model of how humans recognize jumbled images. Moreover, a straightforward machine implementation of this model achieves accuracies similar to human subjects at classifying jumbled images. This indicates that perhaps existing machine vision techniques already leverage local information from images effectively, and future research efforts should be focused on more advanced modeling of global information.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

The performance of current state-of-the-art computer vision algorithms at image classification falls significantly short as compared to human abilities. To reduce this gap, it is important for the community to know what problems to solve, and not just how to solve them. Towards this goal, via the use of jumbled images, we strip apart two widely investigated aspects: local and global information in images, and identify the performance bottleneck. Interestingly, humans have been shown to reliably recognize jumbled images. The goal of our paper is to determine a functional model that mimics how humans recognize jumbled images i.e. exploit local information alone, and further evaluate if existing implementations of this computational model suffice to match human performance. Surprisingly, in our series of human studies and machine experiments, we find that a simple bag-of-words based majority-vote-like strategy is an accurate functional model of how humans recognize jumbled images. Moreover, a straightforward machine implementation of this model achieves accuracies similar to human subjects at classifying jumbled images. This indicates that perhaps existing machine vision techniques already leverage local information from images effectively, and future research efforts should be focused on more advanced modeling of global information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混杂图像识别:局部和全局信息在图像分类中的作用
目前最先进的计算机视觉算法在图像分类方面的表现与人类的能力相比明显不足。为了缩小这一差距,社区必须知道要解决什么问题,而不仅仅是如何解决问题。为了实现这一目标,通过使用混乱的图像,我们剥离了两个广泛研究的方面:图像中的局部和全局信息,并确定了性能瓶颈。有趣的是,人类已经被证明能够可靠地识别杂乱的图像。我们论文的目标是确定一个模拟人类如何识别混乱图像的功能模型,即单独利用局部信息,并进一步评估该计算模型的现有实现是否足以匹配人类的表现。令人惊讶的是,在我们的一系列人类研究和机器实验中,我们发现一个简单的基于词袋的多数投票策略是人类如何识别混乱图像的准确功能模型。此外,该模型的直接机器实现在对混乱图像进行分类时达到了与人类受试者相似的精度。这表明,也许现有的机器视觉技术已经有效地利用了图像中的局部信息,未来的研究工作应该集中在更先进的全局信息建模上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and efficient parametric face alignment Video parsing for abnormality detection From learning models of natural image patches to whole image restoration Discriminative figure-centric models for joint action localization and recognition A general preconditioning scheme for difference measures in deformable registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1