A Bi-Directional Message Passing Model for Salient Object Detection

Lu Zhang, Ju Dai, Huchuan Lu, You He, G. Wang
{"title":"A Bi-Directional Message Passing Model for Salient Object Detection","authors":"Lu Zhang, Ju Dai, Huchuan Lu, You He, G. Wang","doi":"10.1109/CVPR.2018.00187","DOIUrl":null,"url":null,"abstract":"Recent progress on salient object detection is beneficial from Fully Convolutional Neural Network (FCN). The saliency cues contained in multi-level convolutional features are complementary for detecting salient objects. How to integrate multi-level features becomes an open problem in saliency detection. In this paper, we propose a novel bi-directional message passing model to integrate multi-level features for salient object detection. At first, we adopt a Multi-scale Context-aware Feature Extraction Module (MCFEM) for multi-level feature maps to capture rich context information. Then a bi-directional structure is designed to pass messages between multi-level features, and a gate function is exploited to control the message passing rate. We use the features after message passing, which simultaneously encode semantic information and spatial details, to predict saliency maps. Finally, the predicted results are efficiently combined to generate the final saliency map. Quantitative and qualitative experiments on five benchmark datasets demonstrate that our proposed model performs favorably against the state-of-the-art methods under different evaluation metrics.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"11 1","pages":"1741-1750"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"354","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 354

Abstract

Recent progress on salient object detection is beneficial from Fully Convolutional Neural Network (FCN). The saliency cues contained in multi-level convolutional features are complementary for detecting salient objects. How to integrate multi-level features becomes an open problem in saliency detection. In this paper, we propose a novel bi-directional message passing model to integrate multi-level features for salient object detection. At first, we adopt a Multi-scale Context-aware Feature Extraction Module (MCFEM) for multi-level feature maps to capture rich context information. Then a bi-directional structure is designed to pass messages between multi-level features, and a gate function is exploited to control the message passing rate. We use the features after message passing, which simultaneously encode semantic information and spatial details, to predict saliency maps. Finally, the predicted results are efficiently combined to generate the final saliency map. Quantitative and qualitative experiments on five benchmark datasets demonstrate that our proposed model performs favorably against the state-of-the-art methods under different evaluation metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
显著目标检测的双向消息传递模型
近年来在显著目标检测方面取得的进展得益于全卷积神经网络(FCN)。多层卷积特征中包含的显著性线索对于显著性目标的检测是互补的。如何整合多层次特征成为显著性检测中的一个开放性问题。在本文中,我们提出了一种新的双向消息传递模型,该模型集成了显著目标检测的多层次特征。首先,采用多尺度上下文感知特征提取模块(Multi-scale context -aware Feature Extraction Module, MCFEM)进行多层次特征映射,获取丰富的上下文信息。在此基础上,设计了多层特征间的双向消息传递结构,并利用门函数控制消息的通过率。我们利用信息传递后的特征,同时编码语义信息和空间细节,来预测显著性地图。最后,将预测结果有效地组合在一起,生成最终的显著性图。在五个基准数据集上进行的定量和定性实验表明,我们提出的模型在不同的评估指标下优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1