Stock market prediction, COVID-19 pandemic and neural networks: an SCG algorithm application

Himanshu Goel, B. K. Som
{"title":"Stock market prediction, COVID-19 pandemic and neural networks: an SCG algorithm application","authors":"Himanshu Goel, B. K. Som","doi":"10.1108/econ-07-2022-0101","DOIUrl":null,"url":null,"abstract":"PurposeThis study aims to predict the Indian stock market (Nifty 50) by employing macroeconomic variables as input variables identified from the literature for two sub periods, i.e. the pre-coronavirus disease 2019 (COVID-19) (June 2011–February 2020) and during the COVID-19 (March 2020–June 2021).Design/methodology/approachSecondary data on macroeconomic variables and Nifty 50 index spanning a period of last ten years starting from 2011 to 2021 have been from various government and regulatory websites. Also, an artificial neural network (ANN) model was trained with the scaled conjugate gradient algorithm for predicting the National Stock exchange's (NSE) flagship index Nifty 50.FindingsThe findings of the study reveal that Scaled Conjugate Gradient (SCG) algorithm achieved 96.99% accuracy in predicting the Indian stock market in the pre-COVID-19 scenario. On the contrary, the proposed ANN model achieved 99.85% accuracy in during the COVID-19 period. The findings of this study have implications for investors, portfolio managers, domestic and foreign institution investors, etc.Originality/valueThe novelty of this study lies in the fact that are hardly any studies that forecasts the Indian stock market using artificial neural networks in the pre and during COVID-19 periods.","PeriodicalId":84551,"journal":{"name":"De economia","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"De economia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/econ-07-2022-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PurposeThis study aims to predict the Indian stock market (Nifty 50) by employing macroeconomic variables as input variables identified from the literature for two sub periods, i.e. the pre-coronavirus disease 2019 (COVID-19) (June 2011–February 2020) and during the COVID-19 (March 2020–June 2021).Design/methodology/approachSecondary data on macroeconomic variables and Nifty 50 index spanning a period of last ten years starting from 2011 to 2021 have been from various government and regulatory websites. Also, an artificial neural network (ANN) model was trained with the scaled conjugate gradient algorithm for predicting the National Stock exchange's (NSE) flagship index Nifty 50.FindingsThe findings of the study reveal that Scaled Conjugate Gradient (SCG) algorithm achieved 96.99% accuracy in predicting the Indian stock market in the pre-COVID-19 scenario. On the contrary, the proposed ANN model achieved 99.85% accuracy in during the COVID-19 period. The findings of this study have implications for investors, portfolio managers, domestic and foreign institution investors, etc.Originality/valueThe novelty of this study lies in the fact that are hardly any studies that forecasts the Indian stock market using artificial neural networks in the pre and during COVID-19 periods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
股市预测、COVID-19大流行与神经网络:SCG算法应用
本研究旨在通过使用宏观经济变量作为从文献中确定的两个子时期的输入变量,即2019年冠状病毒病前(COVID-19)(2011年6月至2020年2月)和COVID-19期间(2020年3月至2021年6月),来预测印度股市(Nifty 50)。设计/方法/方法宏观经济变量和Nifty 50指数近十年(2011年至2021年)的二手数据来自各个政府和监管网站。此外,采用缩放共轭梯度算法训练人工神经网络(ANN)模型,用于预测美国国家证券交易所(NSE)旗舰指数Nifty 50。研究结果表明,缩放共轭梯度(SCG)算法在预测covid -19前情景下的印度股市时准确率达到96.99%。相反,在COVID-19期间,所提出的ANN模型的准确率达到99.85%。本研究的发现对投资者、投资组合经理、国内外机构投资者等都有影响。独创性/价值本研究的新颖之处在于,在COVID-19之前和期间,几乎没有任何研究使用人工神经网络预测印度股市。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Altitude and Distance Relationships with the Multidimensional Poverty Index: The case of Peru Small Firm Electricity Demand in Las Cruces, New Mexico, USA Preferential Trade Agreements and Productivity: Evidence from Peru Poverty, population growth and agglomeration effects in all Brazil cities What drives small and medium enterprises to establish and terminate banking relationships?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1