MNFIS and other soft computing based MPPT techniques: A comparative analysis

Jesse Roberts, I. Bhattacharya
{"title":"MNFIS and other soft computing based MPPT techniques: A comparative analysis","authors":"Jesse Roberts, I. Bhattacharya","doi":"10.1109/PVSC.2016.7750266","DOIUrl":null,"url":null,"abstract":"Maximum Power Point Tracking (MPPT) is the process of searching the voltage space for the optimal power generation and tracking the optimum as it changes. This paper presents a performance analysis of soft computing algorithms applied to this endeavor and a deployment recommendation based on performance goals. Specifically, fuzzy logic (FL) and artificial neural networks (ANN) were tested with direct and indirect converter control and compared against multiple metrics for fitness. Along the way a novel algorithm was also developed, deemed the Modified Neuro-Fuzzy Inference System (MNFIS). This algorithm incorporates the strengths of both FL and ANN MPPT while mitigating the weaknesses of either.","PeriodicalId":6524,"journal":{"name":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","volume":"31 1","pages":"3247-3251"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2016.7750266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Maximum Power Point Tracking (MPPT) is the process of searching the voltage space for the optimal power generation and tracking the optimum as it changes. This paper presents a performance analysis of soft computing algorithms applied to this endeavor and a deployment recommendation based on performance goals. Specifically, fuzzy logic (FL) and artificial neural networks (ANN) were tested with direct and indirect converter control and compared against multiple metrics for fitness. Along the way a novel algorithm was also developed, deemed the Modified Neuro-Fuzzy Inference System (MNFIS). This algorithm incorporates the strengths of both FL and ANN MPPT while mitigating the weaknesses of either.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MNFIS和其他基于软计算的MPPT技术:比较分析
最大功率点跟踪(MPPT)是在电压空间中搜索最优发电,并跟踪最优发电变化的过程。本文介绍了用于此工作的软计算算法的性能分析以及基于性能目标的部署建议。具体来说,模糊逻辑(FL)和人工神经网络(ANN)在直接和间接转换器控制下进行了测试,并与多个指标进行了适应度比较。在此过程中,一种新的算法也被开发出来,被认为是修正神经模糊推理系统(MNFIS)。该算法结合了人工神经网络和人工神经网络的优点,同时减轻了两者的缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting the efficiency of III-V/Si tandem solar cells Bandgap and carrier transport engineering of quantum confined mixed phase nanocrystalline/amorphous silicon Improving the radiation hardness of space solar cells via nanophotonic light trapping A comparison between two MPC algorithms for demand charge reduction in a real-world microgrid system Enhancing grain growth and boosting Voc in CZTSe absorber layers — Is Ge doping the answer?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1