A Time-Triggered Dimension Reduction Algorithm for the Task Assignment Problem

Hanrui Wang, Kostas Margellos, A. Papachristodoulou
{"title":"A Time-Triggered Dimension Reduction Algorithm for the Task Assignment Problem","authors":"Hanrui Wang, Kostas Margellos, A. Papachristodoulou","doi":"10.48550/arXiv.2204.11476","DOIUrl":null,"url":null,"abstract":"The task assignment problem is fundamental in combinatorial optimisation, aiming at allocating one or more tasks to a number of agents while minimizing the total cost or maximizing the overall assignment benefit. This problem is known to be computationally hard since it is usually formulated as a mixed-integer programming problem. In this paper, we consider a novel time-triggered dimension reduction algorithm (TTDRA). We propose convexification approaches to convexify both the constraints and the cost function for the general non-convex assignment problem. The computational speed is accelerated via our time-triggered dimension reduction scheme, where the triggering condition is designed based on the optimality tolerance and the convexity of the cost function. Optimality and computational efficiency are verified via numerical simulations on benchmark examples.","PeriodicalId":11813,"journal":{"name":"Eur. J. Control","volume":"308 1","pages":"100692"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eur. J. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.11476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The task assignment problem is fundamental in combinatorial optimisation, aiming at allocating one or more tasks to a number of agents while minimizing the total cost or maximizing the overall assignment benefit. This problem is known to be computationally hard since it is usually formulated as a mixed-integer programming problem. In this paper, we consider a novel time-triggered dimension reduction algorithm (TTDRA). We propose convexification approaches to convexify both the constraints and the cost function for the general non-convex assignment problem. The computational speed is accelerated via our time-triggered dimension reduction scheme, where the triggering condition is designed based on the optimality tolerance and the convexity of the cost function. Optimality and computational efficiency are verified via numerical simulations on benchmark examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任务分配问题的一种时间触发降维算法
任务分配问题是组合优化的基础问题,其目的是将一个或多个任务分配给多个智能体,同时使总成本最小化或总体分配效益最大化。众所周知,这个问题很难计算,因为它通常被表述为一个混合整数规划问题。本文提出了一种新的时间触发降维算法(TTDRA)。对于一般的非凸分配问题,我们提出了凸化约束和代价函数的方法。通过基于最优性容差和代价函数的凸性设计触发条件的时间触发降维方案,提高了计算速度。通过对基准算例的数值模拟,验证了算法的最优性和计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonlinear model predictive control for thermal balance in solar trough plants Model reference adaptive control with adjustable gain for piezoelectric actuator Robust non-fragile boundary control for non-linear parabolic PDE systems with semi-Markov switching and input quantization Stabilization of rational nonlinear discrete-time systems by state feedback and static output feedback Experimental study on a novel simultaneous control and identification of a 3-DOF delta robot using model reference adaptive control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1