Ahmad Terra, R. Inam, Sandhya Baskaran, Pedro Batista, Ian Burdick, E. Fersman
{"title":"Explainability Methods for Identifying Root-Cause of SLA Violation Prediction in 5G Network","authors":"Ahmad Terra, R. Inam, Sandhya Baskaran, Pedro Batista, Ian Burdick, E. Fersman","doi":"10.1109/GLOBECOM42002.2020.9322496","DOIUrl":null,"url":null,"abstract":"Artificial Intelligence (AI) is implemented in various applications of telecommunication domain, ranging from managing the network, controlling a specific hardware function, preventing a failure, or troubleshooting a problem till automating the network slice management in 5G. The greater levels of autonomy increase the need for explainability of the decisions made by AI so that humans can understand them (e.g. the underlying data evidence and causal reasoning) consequently enabling trust. This paper presents first, the application of multiple global and local explainability methods with the main purpose to analyze the root-cause of Service Level Agreement violation prediction in a 5G network slicing setup by identifying important features contributing to the decision. Second, it performs a comparative analysis of the applied methods to analyze explainability of the predicted violation. Further, the global explainability results are validated using statistical Causal Dataframe method in order to improve the identified cause of the problem and thus validating the explainability.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"10 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
Artificial Intelligence (AI) is implemented in various applications of telecommunication domain, ranging from managing the network, controlling a specific hardware function, preventing a failure, or troubleshooting a problem till automating the network slice management in 5G. The greater levels of autonomy increase the need for explainability of the decisions made by AI so that humans can understand them (e.g. the underlying data evidence and causal reasoning) consequently enabling trust. This paper presents first, the application of multiple global and local explainability methods with the main purpose to analyze the root-cause of Service Level Agreement violation prediction in a 5G network slicing setup by identifying important features contributing to the decision. Second, it performs a comparative analysis of the applied methods to analyze explainability of the predicted violation. Further, the global explainability results are validated using statistical Causal Dataframe method in order to improve the identified cause of the problem and thus validating the explainability.