Robust multivariate control chart based on shrinkage for individual observations

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Journal of Quality Technology Pub Date : 2021-06-14 DOI:10.1080/00224065.2021.1930617
Elisa Cabana, R. Lillo
{"title":"Robust multivariate control chart based on shrinkage for individual observations","authors":"Elisa Cabana, R. Lillo","doi":"10.1080/00224065.2021.1930617","DOIUrl":null,"url":null,"abstract":"Abstract A robust multivariate quality control technique for individual observations is proposed, based on the robust reweighted shrinkage estimators. A simulation study is done to check the performance and compare the method with the classical Hotelling approach, and the robust alternative based on the reweighted minimum covariance determinant estimator. The results show the appropriateness of the method even when the dimension or the Phase I contamination are high, with both independent and correlated variables, showing additional advantages about computational efficiency. The approach is illustrated with two real data-set examples from production processes.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"1 1","pages":"415 - 440"},"PeriodicalIF":2.6000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2021.1930617","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 10

Abstract

Abstract A robust multivariate quality control technique for individual observations is proposed, based on the robust reweighted shrinkage estimators. A simulation study is done to check the performance and compare the method with the classical Hotelling approach, and the robust alternative based on the reweighted minimum covariance determinant estimator. The results show the appropriateness of the method even when the dimension or the Phase I contamination are high, with both independent and correlated variables, showing additional advantages about computational efficiency. The approach is illustrated with two real data-set examples from production processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于单个观察值收缩的鲁棒多变量控制图
摘要提出了一种基于鲁棒重加权收缩估计量的多变量质量控制方法。通过仿真研究验证了该方法的性能,并与经典的Hotelling方法以及基于重加权最小协方差行行式估计的鲁棒替代方法进行了比较。结果表明,即使在维度或第一阶段污染较高的情况下,独立变量和相关变量都具有该方法的适用性,并且在计算效率方面具有额外的优势。用生产过程中的两个真实数据集示例说明了该方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
期刊最新文献
SpTe2M: An R package for nonparametric modeling and monitoring of spatiotemporal data Spatial modeling and monitoring considering long-range dependence A change-point–based control chart for detecting sparse mean changes in high-dimensional heteroscedastic data Best practices for multi- and mixed-level supersaturated designs Sequential Latin hypercube design for two-layer computer simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1