Remediation of A Complex Blockage for Gumusut-Kakap Subsea Flexible Flowline from a System Perspective

Yong Chin Gwee, Grace Chin, Chee Hou. Chan, Lee San Chua, Jason Ling, Yvonne Wu
{"title":"Remediation of A Complex Blockage for Gumusut-Kakap Subsea Flexible Flowline from a System Perspective","authors":"Yong Chin Gwee, Grace Chin, Chee Hou. Chan, Lee San Chua, Jason Ling, Yvonne Wu","doi":"10.4043/31422-ms","DOIUrl":null,"url":null,"abstract":"A subsea production flexible flowline in Gumusut-Kakap field was found blocked in March 2021 during a routine production well-flowline switching/alignment operation. Further evaluation showed that the blockage was caused by the formation of hydrate and gel over the 1.3km length of the flexible flowline, as the live crude and water were left stagnant and untreated in the flowline over a prolonged period. This paper covers the remediation strategy and the associated challenges from a System perspective, which successfully unblocked the flowline within a relatively short period of time.\n The condition of the blockage in the flexible flowline was simulated using a commercial multiphase dynamic software to ascertain the phase distribution and hence allowed the estimation of the location and length of hydrate, gel, and emulsion in the flowline which has a downward inclination of circa 50 meters height. Heating (from production well), methanol (MeOH) soaking and flowline depressurization were planned and executed. In addition to the technical methodology, the System-wide aspects were also considered for the effective and optimum execution of the remediation activities which include attempting to fulfill the production commitment, abide by the subsea hardware and flexible flowline integrity envelope, and consider the impact of the remediation operation on other operations at the Gumusut-Kakap installation.\n The MeOH soaking, flowline depressurization and pressurization successfully remediated the blockage over the period of weeks. Positive results were observed at the start of the remediation when the targeted location for MeOH contact and depressurization were identified via field trial. One of the key challenges is the time factor in which to ascertain the \"appropriate\" waiting time for the flowline depressurization, as the remediation involved partial shut-in of the prolific production wells.\n A holistic System engineering approach is critical to the successful remediation of the blockage, integrating the key technical requirements as well as the soft and non-technical aspects to deliver optimum and net positive value for the asset.","PeriodicalId":11011,"journal":{"name":"Day 3 Thu, March 24, 2022","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31422-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A subsea production flexible flowline in Gumusut-Kakap field was found blocked in March 2021 during a routine production well-flowline switching/alignment operation. Further evaluation showed that the blockage was caused by the formation of hydrate and gel over the 1.3km length of the flexible flowline, as the live crude and water were left stagnant and untreated in the flowline over a prolonged period. This paper covers the remediation strategy and the associated challenges from a System perspective, which successfully unblocked the flowline within a relatively short period of time. The condition of the blockage in the flexible flowline was simulated using a commercial multiphase dynamic software to ascertain the phase distribution and hence allowed the estimation of the location and length of hydrate, gel, and emulsion in the flowline which has a downward inclination of circa 50 meters height. Heating (from production well), methanol (MeOH) soaking and flowline depressurization were planned and executed. In addition to the technical methodology, the System-wide aspects were also considered for the effective and optimum execution of the remediation activities which include attempting to fulfill the production commitment, abide by the subsea hardware and flexible flowline integrity envelope, and consider the impact of the remediation operation on other operations at the Gumusut-Kakap installation. The MeOH soaking, flowline depressurization and pressurization successfully remediated the blockage over the period of weeks. Positive results were observed at the start of the remediation when the targeted location for MeOH contact and depressurization were identified via field trial. One of the key challenges is the time factor in which to ascertain the "appropriate" waiting time for the flowline depressurization, as the remediation involved partial shut-in of the prolific production wells. A holistic System engineering approach is critical to the successful remediation of the blockage, integrating the key technical requirements as well as the soft and non-technical aspects to deliver optimum and net positive value for the asset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从系统角度对Gumusut-Kakap海底柔性管线复杂堵塞进行修复
2021年3月,Gumusut-Kakap油田的一条水下生产柔性管线在常规生产管线切换/校准作业中被发现堵塞。进一步的评估表明,堵塞是由于在1.3km长的柔性管线上形成水合物和凝胶造成的,因为活的原油和水在管道中长时间处于停滞状态,未经处理。本文从系统的角度介绍了补救策略和相关挑战,并在相对较短的时间内成功地疏通了管道。利用商业多相动态软件对柔性管线中的堵塞情况进行了模拟,以确定相分布,从而可以估计水合物、凝胶和乳化液在向下倾斜约50米高度的管线中的位置和长度。计划并执行了加热(从生产井开始)、甲醇(MeOH)浸泡和管线降压。除了技术方法之外,还考虑了有效和最佳执行修复活动的全系统方面,包括试图履行生产承诺,遵守海底硬件和灵活的流动管线完整性,并考虑修复作业对Gumusut-Kakap设施其他作业的影响。在数周的时间里,MeOH浸泡、管线降压和加压成功地修复了堵塞。在修复开始时,通过现场试验确定了MeOH接触和减压的目标位置,观察到积极的结果。其中一个关键的挑战是时间因素,即确定“适当”的流线降压等待时间,因为补救措施涉及部分关闭高产生产井。整体系统工程方法对于成功修复堵塞物至关重要,整合关键技术要求以及软技术和非技术方面,为资产提供最佳的净价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Advance Petrophysical Evaluation for Heterolithic Clastics Reservoir Characterization Optimization in Malay Basin The Transformation Journey and Key Critical Success Factors of Turbomachinery Digital Remote Monitoring Biggest Wells Plug and Abandonment Campaign – Effective Management & Best Practices Implementation Zawtika Deferment Management Enhancement: A Systematic Way to Unlock Gas Potential for Optimized Operations Breakthrough Integration of 3-1/2? Tubing in 8-1/2? Hole Cemented Monobore for Successful Tubing Stem Test TST
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1