Overcoming harmonic hurdles: Genuine beta-band rhythms vs. contributions of alpha-band waveform shape

N. Schaworonkow
{"title":"Overcoming harmonic hurdles: Genuine beta-band rhythms vs. contributions of alpha-band waveform shape","authors":"N. Schaworonkow","doi":"10.1162/imag_a_00018","DOIUrl":null,"url":null,"abstract":"Abstract Beta-band activity in the human cortex as recorded with noninvasive electrophysiology is of diverse origin. In addition to genuine beta-rhythms, there are numerous nonsinusoidal alpha-band rhythms present in the human brain, which will result in harmonic beta-band peaks. This type of activity has different temporal and response dynamics than genuine beta-rhythms. Here, it is argued that in the analysis of higher-frequency rhythms, the relationship to lower-frequency rhythms needs to be clarified. Only in that way we can arrive at strong, methodologically valid interpretations of potential functional roles and generative mechanisms of neural oscillations.","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"41 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/imag_a_00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Beta-band activity in the human cortex as recorded with noninvasive electrophysiology is of diverse origin. In addition to genuine beta-rhythms, there are numerous nonsinusoidal alpha-band rhythms present in the human brain, which will result in harmonic beta-band peaks. This type of activity has different temporal and response dynamics than genuine beta-rhythms. Here, it is argued that in the analysis of higher-frequency rhythms, the relationship to lower-frequency rhythms needs to be clarified. Only in that way we can arrive at strong, methodologically valid interpretations of potential functional roles and generative mechanisms of neural oscillations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
克服谐波障碍:真正的β波段节奏与α波段波形形状的贡献
摘要:无创电生理学记录的人类皮层β带活动有多种来源。除了真正的β -节律外,人脑中还存在许多非正弦α -带节律,这将导致谐波β -带峰值。这种类型的活动与真正的β节律有不同的时间和反应动态。本文认为,在分析高频节奏时,需要澄清与低频节奏的关系。只有这样,我们才能对神经振荡的潜在功能作用和生成机制做出强有力的、方法学上有效的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synthetic data in generalizable, learning-based neuroimaging. Processing, evaluating, and understanding FMRI data with afni_proc.py. NOise Reduction with DIstribution Corrected (NORDIC) principal component analysis improves brain activity detection across rodent and human functional MRI contexts. Measurement variability of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging. ECCENTRIC: A fast and unrestrained approach for high-resolution in vivo metabolic imaging at ultra-high field MR.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1