Mohammad Hossein Jandaghian, A. Sepahi, S. Hosseini, Romina Esmaeilzade, Ehsan Nikzinat, Ali Salimzadeh, Reza Zaeri, Maryam Masoori
{"title":"Tuning tear and slow crack growth resistance of linear low-density polyethylene resins through partial replacement of 1-butene with 1-hexene","authors":"Mohammad Hossein Jandaghian, A. Sepahi, S. Hosseini, Romina Esmaeilzade, Ehsan Nikzinat, Ali Salimzadeh, Reza Zaeri, Maryam Masoori","doi":"10.1080/10601325.2023.2251534","DOIUrl":null,"url":null,"abstract":"Abstract The present study encompasses the utilization of a mixture of 1-butene and 1-hexene comonomers for the large-scale production of a film-grade linear low-density polyethylene (LLDPE) resin. The goal involves assessing the impact stemming from the partial replacement of 1-butene with 1-hexene on the thermal, physical, mechanical and rheological properties of the resultant resin, juxtaposed against an LLDPE counterpart exclusively produced by 1-butene as the comonomer. Although the comprehensive examination of key physical, thermal, rheological and mechanical characteristics indicates nominal influence due to the substitution, a marked escalation materializes in both the tear resistance and slow crack growth (SCG) resilience of the LLDPE resins formulated through the amalgamation of these comonomers. Specifically, the tear and SCG resistance of the proposed resin exhibit an extraordinary surge exceeding 60% and 30%, respectively. This discernible enhancement underscores the viability of the proposed technique as a propitious avenue for augmenting the requisite mechanical properties, obviating the need for an all-encompassing shift from 1-butene to longer-chain α-olefin comonomers. Graphical Abstract","PeriodicalId":16228,"journal":{"name":"Journal of Macromolecular Science, Part A","volume":"9 1","pages":"661 - 667"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Macromolecular Science, Part A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10601325.2023.2251534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The present study encompasses the utilization of a mixture of 1-butene and 1-hexene comonomers for the large-scale production of a film-grade linear low-density polyethylene (LLDPE) resin. The goal involves assessing the impact stemming from the partial replacement of 1-butene with 1-hexene on the thermal, physical, mechanical and rheological properties of the resultant resin, juxtaposed against an LLDPE counterpart exclusively produced by 1-butene as the comonomer. Although the comprehensive examination of key physical, thermal, rheological and mechanical characteristics indicates nominal influence due to the substitution, a marked escalation materializes in both the tear resistance and slow crack growth (SCG) resilience of the LLDPE resins formulated through the amalgamation of these comonomers. Specifically, the tear and SCG resistance of the proposed resin exhibit an extraordinary surge exceeding 60% and 30%, respectively. This discernible enhancement underscores the viability of the proposed technique as a propitious avenue for augmenting the requisite mechanical properties, obviating the need for an all-encompassing shift from 1-butene to longer-chain α-olefin comonomers. Graphical Abstract