3D printing and bioprinting in urology

IF 6.8 3区 医学 Q1 ENGINEERING, BIOMEDICAL International Journal of Bioprinting Pub Date : 2023-08-10 DOI:10.36922/ijb.0969
Kun Liu, Nan Hu, Zhihai Yu, Xin-Zheng Zhang, Hualin Ma, Huawei Qu, Changshun Ruan
{"title":"3D printing and bioprinting in urology","authors":"Kun Liu, Nan Hu, Zhihai Yu, Xin-Zheng Zhang, Hualin Ma, Huawei Qu, Changshun Ruan","doi":"10.36922/ijb.0969","DOIUrl":null,"url":null,"abstract":"Three-dimensional (3D) printing with highly flexible fabrication offers unlimited possibilities to create complex constructs. With the addition of active substances such as biomaterials, living cells, and growth factors, 3D printing can be upgraded to 3D bioprinting, endowing fabricated constructs with biological functions. Urology, as one of the important branches of clinical medicine, covers a variety of organs in the human body, such as kidneys, bladder, urethra, and prostate. The urological organs are multi-tubular, heterogeneous, and anisotropic, bringing huge challenges to 3D printing and bioprinting. This review aims to summarize the development of 3D printing and bioprinting technologies in urology in the last decade based on the Science Citation Index-Expanded (SCI-E) in the Web of Science Core Collection online database (Clarivate). First, we demonstrate the search strategies for published papers using the keywords such as “3D printing,” “3D bioprinting,” and “urology.” Then, eight common 3D printing technologies were introduced in detail with their characteristics, advantages, and disadvantages. Furthermore, the application of 3D printing in urology was explored, such as the fabrication of diseased organs for doctor–patient communication, surgical planning, clinical teaching, and the creation of customized medical devices. Finally, we discuss the exploration of 3D bioprinting to create in vitro bionic 3D environment models for urology. Overall, 3D printing provides the technical support for urology to better serve patients and aid teaching, and 3D bioprinting enables the clinical applications of fabricated constructs for the replacement and repair of urologically damaged organs in future.","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.36922/ijb.0969","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional (3D) printing with highly flexible fabrication offers unlimited possibilities to create complex constructs. With the addition of active substances such as biomaterials, living cells, and growth factors, 3D printing can be upgraded to 3D bioprinting, endowing fabricated constructs with biological functions. Urology, as one of the important branches of clinical medicine, covers a variety of organs in the human body, such as kidneys, bladder, urethra, and prostate. The urological organs are multi-tubular, heterogeneous, and anisotropic, bringing huge challenges to 3D printing and bioprinting. This review aims to summarize the development of 3D printing and bioprinting technologies in urology in the last decade based on the Science Citation Index-Expanded (SCI-E) in the Web of Science Core Collection online database (Clarivate). First, we demonstrate the search strategies for published papers using the keywords such as “3D printing,” “3D bioprinting,” and “urology.” Then, eight common 3D printing technologies were introduced in detail with their characteristics, advantages, and disadvantages. Furthermore, the application of 3D printing in urology was explored, such as the fabrication of diseased organs for doctor–patient communication, surgical planning, clinical teaching, and the creation of customized medical devices. Finally, we discuss the exploration of 3D bioprinting to create in vitro bionic 3D environment models for urology. Overall, 3D printing provides the technical support for urology to better serve patients and aid teaching, and 3D bioprinting enables the clinical applications of fabricated constructs for the replacement and repair of urologically damaged organs in future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
泌尿外科的3D打印和生物打印
具有高度柔性制造的三维(3D)打印为创建复杂结构提供了无限的可能性。随着生物材料、活细胞、生长因子等活性物质的加入,3D打印可以升级为3D生物打印,使制造的结构物具有生物功能。泌尿外科是临床医学的重要分支之一,涵盖了人体的肾脏、膀胱、尿道、前列腺等多种器官。泌尿系统器官具有多管性、异质性和各向异性,这给3D打印和生物打印带来了巨大的挑战。本文以Web of Science Core Collection在线数据库(Clarivate)中的SCI-E为基础,综述了近十年来3D打印和生物打印技术在泌尿外科领域的发展。首先,我们演示了使用“3D打印”、“3D生物打印”和“泌尿学”等关键词搜索已发表论文的策略。然后,详细介绍了八种常见的3D打印技术,以及它们的特点、优缺点。此外,还探讨了3D打印在泌尿外科的应用,如用于医患交流、手术计划、临床教学的病变器官的制造以及定制医疗设备的创建。最后,我们讨论了3D生物打印在泌尿外科体外仿生3D环境模型中的探索。总体而言,3D打印为泌尿外科更好地服务患者和辅助教学提供了技术支持,3D生物打印为未来泌尿系统损伤器官的替换和修复提供了临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
4.80%
发文量
81
期刊介绍: The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.
期刊最新文献
Methacrylic anhydride-assisted one-step in-situ extrusion 3D bioprinting of collagen hydrogels for enhanced full-thickness skin regeneration Advancements in 3D bioprinting for nanoparticle evaluation: Techniques, models, and biological applications Experimental and numerical approaches for optimizing conjunction area design to enhance switching efficiency in single-nozzle multi-ink bioprinting systems Osteocytic PGE2 receptors EP2/4 signaling create a physiological osteogenic microenvironment in polycaprolactone 3D module Design and fabrication of anisotropic SiO2 gyroid bioscaffolds with tunable properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1