Zero-Overhead Path Prediction with Progressive Symbolic Execution

Richard Rutledge, Sunjae Park, Haider Adnan Khan, A. Orso, Milos Prvulović, A. Zajić
{"title":"Zero-Overhead Path Prediction with Progressive Symbolic Execution","authors":"Richard Rutledge, Sunjae Park, Haider Adnan Khan, A. Orso, Milos Prvulović, A. Zajić","doi":"10.1109/ICSE.2019.00039","DOIUrl":null,"url":null,"abstract":"In previous work, we introduced zero-overhead profiling (ZOP), a technique that leverages the electromagnetic emissions generated by the computer hardware to profile a program without instrumenting it. Although effective, ZOP has several shortcomings: it requires test inputs that achieve extensive code coverage for its training phase; it predicts path profiles instead of complete execution traces; and its predictions can suffer unrecoverable accuracy losses. In this paper, we present zero-overhead path prediction (ZOP-2), an approach that extends ZOP and addresses its limitations. First, ZOP-2 achieves high coverage during training through progressive symbolic execution (PSE)-symbolic execution of increasingly small program fragments. Second, ZOP-2 predicts complete execution traces, rather than path profiles. Finally, ZOP-2 mitigates the problem of path mispredictions by using a stateless approach that can recover from prediction errors. We evaluated our approach on a set of benchmarks with promising results; for the cases considered, (1) ZOP-2 achieved over 90% path prediction accuracy, and (2) PSE covered feasible paths missed by traditional symbolic execution, thus boosting ZOP-2's accuracy.","PeriodicalId":6736,"journal":{"name":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","volume":"14 1","pages":"234-245"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In previous work, we introduced zero-overhead profiling (ZOP), a technique that leverages the electromagnetic emissions generated by the computer hardware to profile a program without instrumenting it. Although effective, ZOP has several shortcomings: it requires test inputs that achieve extensive code coverage for its training phase; it predicts path profiles instead of complete execution traces; and its predictions can suffer unrecoverable accuracy losses. In this paper, we present zero-overhead path prediction (ZOP-2), an approach that extends ZOP and addresses its limitations. First, ZOP-2 achieves high coverage during training through progressive symbolic execution (PSE)-symbolic execution of increasingly small program fragments. Second, ZOP-2 predicts complete execution traces, rather than path profiles. Finally, ZOP-2 mitigates the problem of path mispredictions by using a stateless approach that can recover from prediction errors. We evaluated our approach on a set of benchmarks with promising results; for the cases considered, (1) ZOP-2 achieved over 90% path prediction accuracy, and (2) PSE covered feasible paths missed by traditional symbolic execution, thus boosting ZOP-2's accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
渐进式符号执行的零开销路径预测
在之前的工作中,我们介绍了零开销分析(zero-overhead profiling, ZOP),这是一种利用计算机硬件产生的电磁发射来分析程序而不使用仪器的技术。虽然ZOP是有效的,但是它有几个缺点:它需要在训练阶段实现广泛的代码覆盖的测试输入;它预测路径配置文件,而不是完整的执行轨迹;而且它的预测可能会遭受无法挽回的准确性损失。在本文中,我们提出了零开销路径预测(ZOP-2),这是一种扩展ZOP并解决其局限性的方法。首先,ZOP-2通过渐进式符号执行(PSE)——对越来越小的程序片段进行符号执行——在训练过程中实现了高覆盖率。其次,ZOP-2预测完整的执行跟踪,而不是路径概要。最后,通过使用可以从预测错误中恢复的无状态方法,ZOP-2减轻了路径错误预测的问题。我们在一系列具有良好结果的基准上评估了我们的方法;对于所考虑的情况,(1)ZOP-2的路径预测精度达到90%以上,(2)PSE覆盖了传统符号执行错过的可行路径,从而提高了ZOP-2的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VFix: Value-Flow-Guided Precise Program Repair for Null Pointer Dereferences Search-Based Energy Testing of Android Scalable Approaches for Test Suite Reduction A System Identification Based Oracle for Control-CPS Software Fault Localization Training Binary Classifiers as Data Structure Invariants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1