A model-learner pattern for bayesian reasoning

A. Gordon, Mihhail Aizatulin, J. Borgström, Guillaume Claret, T. Graepel, A. Nori, S. Rajamani, Claudio V. Russo
{"title":"A model-learner pattern for bayesian reasoning","authors":"A. Gordon, Mihhail Aizatulin, J. Borgström, Guillaume Claret, T. Graepel, A. Nori, S. Rajamani, Claudio V. Russo","doi":"10.1145/2429069.2429119","DOIUrl":null,"url":null,"abstract":"A Bayesian model is based on a pair of probability distributions, known as the prior and sampling distributions. A wide range of fundamental machine learning tasks, including regression, classification, clustering, and many others, can all be seen as Bayesian models. We propose a new probabilistic programming abstraction, a typed Bayesian model, which is based on a pair of probabilistic expressions for the prior and sampling distributions. A sampler for a model is an algorithm to compute synthetic data from its sampling distribution, while a learner for a model is an algorithm for probabilistic inference on the model. Models, samplers, and learners form a generic programming pattern for model-based inference. They support the uniform expression of common tasks including model testing, and generic compositions such as mixture models, evidence-based model averaging, and mixtures of experts. A formal semantics supports reasoning about model equivalence and implementation correctness. By developing a series of examples and three learner implementations based on exact inference, factor graphs, and Markov chain Monte Carlo, we demonstrate the broad applicability of this new programming pattern.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"59 1","pages":"403-416"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2429069.2429119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

A Bayesian model is based on a pair of probability distributions, known as the prior and sampling distributions. A wide range of fundamental machine learning tasks, including regression, classification, clustering, and many others, can all be seen as Bayesian models. We propose a new probabilistic programming abstraction, a typed Bayesian model, which is based on a pair of probabilistic expressions for the prior and sampling distributions. A sampler for a model is an algorithm to compute synthetic data from its sampling distribution, while a learner for a model is an algorithm for probabilistic inference on the model. Models, samplers, and learners form a generic programming pattern for model-based inference. They support the uniform expression of common tasks including model testing, and generic compositions such as mixture models, evidence-based model averaging, and mixtures of experts. A formal semantics supports reasoning about model equivalence and implementation correctness. By developing a series of examples and three learner implementations based on exact inference, factor graphs, and Markov chain Monte Carlo, we demonstrate the broad applicability of this new programming pattern.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯推理的模型-学习者模式
贝叶斯模型是基于一对概率分布,即先验分布和抽样分布。广泛的基本机器学习任务,包括回归、分类、聚类和许多其他任务,都可以被视为贝叶斯模型。我们提出了一种新的概率规划抽象,即基于先验分布和抽样分布的一对概率表达式的类型化贝叶斯模型。模型的采样器是一种从样本分布中计算合成数据的算法,而模型的学习器是一种对模型进行概率推理的算法。模型、采样器和学习器形成了基于模型的推理的通用编程模式。它们支持通用任务的统一表达,包括模型测试,以及诸如混合模型、循证模型平均和专家混合等通用组合。形式化语义支持关于模型等价性和实现正确性的推理。通过开发一系列示例和三种基于精确推理、因子图和马尔可夫链蒙特卡罗的学习器实现,我们展示了这种新的编程模式的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Verified systems Session details: Semantic models 2 Session details: Program analysis 3 Session details: Program analysis 1 Session details: Type system design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1