Towards scalable critical alert mining

Bo Zong, Yinghui Wu, Jie Song, Ambuj K. Singh, H. Çam, Jiawei Han, Xifeng Yan
{"title":"Towards scalable critical alert mining","authors":"Bo Zong, Yinghui Wu, Jie Song, Ambuj K. Singh, H. Çam, Jiawei Han, Xifeng Yan","doi":"10.1145/2623330.2623729","DOIUrl":null,"url":null,"abstract":"Performance monitor software for data centers typically generates a great number of alert sequences. These alert sequences indicate abnormal network events. Given a set of observed alert sequences, it is important to identify the most critical alerts that are potentially the causes of others. While the need for mining critical alerts over large scale alert sequences is evident, most alert analysis techniques stop at modeling and mining the causal relations among the alerts. This paper studies the critical alert mining problem: Given a set of alert sequences, we aim to find a set of k critical alerts such that the number of alerts potentially triggered by them is maximized. We show that the problem is intractable; therefore, we resort to approximation and heuristic algorithms. First, we develop an approximation algorithm that obtains a near-optimal alert set in quadratic time, and propose pruning techniques to improve its runtime performance. Moreover, we show a faster approximation exists, when the alerts follow certain causal structure. Second, we propose two fast heuristic algorithms based on tree sampling techniques. On real-life data, these algorithms identify a critical alert from up to 270,000 mined causal relations in 5 seconds; meanwhile, they preserve more than 80% of solution quality, and are up to 5,000 times faster than their approximation counterparts.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Performance monitor software for data centers typically generates a great number of alert sequences. These alert sequences indicate abnormal network events. Given a set of observed alert sequences, it is important to identify the most critical alerts that are potentially the causes of others. While the need for mining critical alerts over large scale alert sequences is evident, most alert analysis techniques stop at modeling and mining the causal relations among the alerts. This paper studies the critical alert mining problem: Given a set of alert sequences, we aim to find a set of k critical alerts such that the number of alerts potentially triggered by them is maximized. We show that the problem is intractable; therefore, we resort to approximation and heuristic algorithms. First, we develop an approximation algorithm that obtains a near-optimal alert set in quadratic time, and propose pruning techniques to improve its runtime performance. Moreover, we show a faster approximation exists, when the alerts follow certain causal structure. Second, we propose two fast heuristic algorithms based on tree sampling techniques. On real-life data, these algorithms identify a critical alert from up to 270,000 mined causal relations in 5 seconds; meanwhile, they preserve more than 80% of solution quality, and are up to 5,000 times faster than their approximation counterparts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
迈向可扩展的关键警报挖掘
用于数据中心的性能监控软件通常会生成大量警报序列。这些警报序列表示异常的网络事件。给定一组观察到的警报序列,确定可能导致其他警报的最关键警报是很重要的。虽然在大规模警报序列上挖掘关键警报的需求是显而易见的,但大多数警报分析技术都停留在建模和挖掘警报之间的因果关系上。本文研究了关键警报挖掘问题:给定一组警报序列,我们的目标是找到一组k个关键警报,使它们可能触发的警报数量最大化。我们表明这个问题是难以解决的;因此,我们采用近似和启发式算法。首先,我们开发了一种近似算法,在二次时间内获得接近最优的警报集,并提出了修剪技术来提高其运行时性能。此外,我们表明,当警报遵循一定的因果结构时,存在更快的近似。其次,我们提出了两种基于树采样技术的快速启发式算法。在现实数据上,这些算法在5秒钟内从多达27万个挖掘的因果关系中识别出一个关键警报;同时,它们保持了80%以上的溶液质量,并且比近似的同类产品快5000倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1