Improving the Efficiency by Novel Feature Extraction Technique Using Decision Tree Algorithm Comparing with SVM Classifier Algorithm for Predicting Heart Disease
{"title":"Improving the Efficiency by Novel Feature Extraction Technique Using Decision Tree Algorithm Comparing with SVM Classifier Algorithm for Predicting Heart Disease","authors":"Sarah Sameer, P. Sriramya","doi":"10.47059/alinteri/v36i1/ajas21100","DOIUrl":null,"url":null,"abstract":"Aim: The objective of the research work is to use the two machine learning algorithms Decision Tree(DT) and Support vector machine(SVM) for detection of heart disease on earlier stages and give more accurate prediction. Materials and methods: Prediction of heart disease is performed using two machine learning classifier algorithms namely, Decision Tree and Support Vector Machine methods. Decision tree is the predictive modeling approach used in machine learning, it is a type of supervised machine learning. Support-vector machines are directed learning models with related learning calculations that break down information for order and relapse investigation. The significance value for calculating Accuracy was found to be 0.005. Result and discussion: During the process of testing 10 iterations have been taken for each of the classification algorithms respectively. The experimental results shows that the decision tree algorithm with mean accuracy of 80.257% is compared with the SVM classifier algorithm of mean accuracy 75.337% Conclusion: Based on the results achieved the Decision Tree classification algorithm better prediction of heart disease than the SVM classifier algorithm.","PeriodicalId":42396,"journal":{"name":"Alinteri Journal of Agriculture Sciences","volume":"114 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alinteri Journal of Agriculture Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47059/alinteri/v36i1/ajas21100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aim: The objective of the research work is to use the two machine learning algorithms Decision Tree(DT) and Support vector machine(SVM) for detection of heart disease on earlier stages and give more accurate prediction. Materials and methods: Prediction of heart disease is performed using two machine learning classifier algorithms namely, Decision Tree and Support Vector Machine methods. Decision tree is the predictive modeling approach used in machine learning, it is a type of supervised machine learning. Support-vector machines are directed learning models with related learning calculations that break down information for order and relapse investigation. The significance value for calculating Accuracy was found to be 0.005. Result and discussion: During the process of testing 10 iterations have been taken for each of the classification algorithms respectively. The experimental results shows that the decision tree algorithm with mean accuracy of 80.257% is compared with the SVM classifier algorithm of mean accuracy 75.337% Conclusion: Based on the results achieved the Decision Tree classification algorithm better prediction of heart disease than the SVM classifier algorithm.