{"title":"Pressure infiltration behavior and fluid loss of bentonite slurry: A comparative study of two bentonite slurries","authors":"Su Qin, Yangrui Cheng, He Huang, Wan-Huan Zhou","doi":"10.1139/cgj-2023-0103","DOIUrl":null,"url":null,"abstract":"Bentonite slurry is frequently used to temporarily stabilize the excavation for slurry tunnel boring machines (TBMs) driving in permeable soils, such as sand and gravel. In this study, two types of bentonite slurries (BS1 and BS2) were subjected to a series of infiltration column tests and modified fluid-loss tests under various pressure levels. Monitoring of water discharge and pore pressures at different depths of the sand bed enabled the identification of two effective sealing patterns during infiltration: the formation of a filter cake and rheological blocking. BS1 exhibited a tendency to form a filter cake, which played a vital role in effectively transferring the applied pressure to the underlying soil skeleton. The application of higher pressure facilitated the rapid formation of a filter cake, resulting in a shorter time span for slurry invasion and minimizing fluid loss. On the other hand, rheological blocking was dominant when using BS2, and the maximum infiltration distance was found to linearly increase with the applied pressure. A comparison between the measurement and a simple prediction model derived from Darcy’s law revealed an overestimation of the infiltration distance during slurry invasion. Furthermore, based on the modified fluid-loss test, higher pressure was found to densify the filter cake and result in lower hydraulic conductivity.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"222 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0103","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Bentonite slurry is frequently used to temporarily stabilize the excavation for slurry tunnel boring machines (TBMs) driving in permeable soils, such as sand and gravel. In this study, two types of bentonite slurries (BS1 and BS2) were subjected to a series of infiltration column tests and modified fluid-loss tests under various pressure levels. Monitoring of water discharge and pore pressures at different depths of the sand bed enabled the identification of two effective sealing patterns during infiltration: the formation of a filter cake and rheological blocking. BS1 exhibited a tendency to form a filter cake, which played a vital role in effectively transferring the applied pressure to the underlying soil skeleton. The application of higher pressure facilitated the rapid formation of a filter cake, resulting in a shorter time span for slurry invasion and minimizing fluid loss. On the other hand, rheological blocking was dominant when using BS2, and the maximum infiltration distance was found to linearly increase with the applied pressure. A comparison between the measurement and a simple prediction model derived from Darcy’s law revealed an overestimation of the infiltration distance during slurry invasion. Furthermore, based on the modified fluid-loss test, higher pressure was found to densify the filter cake and result in lower hydraulic conductivity.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.