Network compression: Worst-case analysis

Himanshu Asnani, Ilan Shomorony, A. Avestimehr, T. Weissman
{"title":"Network compression: Worst-case analysis","authors":"Himanshu Asnani, Ilan Shomorony, A. Avestimehr, T. Weissman","doi":"10.1109/ISIT.2013.6620215","DOIUrl":null,"url":null,"abstract":"We consider the problem of communicating a distributed correlated memoryless source over a memoryless network, from source nodes to destination nodes, under quadratic distortion constraints. We show the following two complementary results: (a) for an arbitrary memoryless network, among all distributed memoryless sources with a particular correlation, Gaussian sources are the worst compressible, that is, they admit the smallest set of achievable distortion tuples, and (b) for any arbitrarily distributed memoryless source to be communicated over a memoryless additive noise network, among all noise processes with a fixed correlation, Gaussian noise admits the smallest achievable set of distortion tuples. In each case, given a coding scheme for the corresponding Gaussian problem, we provide a technique for the construction of a new coding scheme that achieves the same distortion at the destination nodes in a non-Gaussian scenario with the same correlation structure.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2013.6620215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We consider the problem of communicating a distributed correlated memoryless source over a memoryless network, from source nodes to destination nodes, under quadratic distortion constraints. We show the following two complementary results: (a) for an arbitrary memoryless network, among all distributed memoryless sources with a particular correlation, Gaussian sources are the worst compressible, that is, they admit the smallest set of achievable distortion tuples, and (b) for any arbitrarily distributed memoryless source to be communicated over a memoryless additive noise network, among all noise processes with a fixed correlation, Gaussian noise admits the smallest achievable set of distortion tuples. In each case, given a coding scheme for the corresponding Gaussian problem, we provide a technique for the construction of a new coding scheme that achieves the same distortion at the destination nodes in a non-Gaussian scenario with the same correlation structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络压缩:最坏情况分析
考虑在二次失真约束下,在无记忆网络上从源节点到目标节点的分布式相关无记忆源通信问题。我们展示了以下两个互补的结果:(a)对于任意无记忆网络,在所有具有特定相关性的分布式无记忆源中,高斯源的可压缩性最差,即承认可实现的最小畸变元组集;(b)对于通过无记忆加性噪声网络通信的任意分布无记忆源,在所有具有固定相关性的噪声过程中,高斯噪声承认可实现的最小畸变元组集。在每种情况下,给定相应高斯问题的编码方案,我们提供了一种构建新编码方案的技术,该编码方案在具有相同相关结构的非高斯场景中在目标节点处实现相同的失真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rank Preserving Code-based Signature Buddhism and the Religious Other Statistical Inference and Exact Saddle Point Approximations Topological structures on DMC spaces A computer-aided investigation on the fundamental limits of caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1